E-theory
   HOME
*





E-theory
In mathematics, ''KK''-theory is a common generalization both of K-homology and K-theory as an additive bivariant functor on separable C*-algebras. This notion was introduced by the Russian mathematician Gennadi Kasparov in 1980. It was influenced by Atiyah's concept of Fredholm modules for the Atiyah–Singer index theorem, and the classification of extensions of C*-algebras by Lawrence G. Brown, Ronald G. Douglas, and Peter Arthur Fillmore in 1977. In turn, it has had great success in operator algebraic formalism toward the index theory and the classification of nuclear C*-algebras, as it was the key to the solutions of many problems in operator K-theory, such as, for instance, the mere calculation of ''K''-groups. Furthermore, it was essential in the development of the Baum–Connes conjecture and plays a crucial role in noncommutative topology. ''KK''-theory was followed by a series of similar bifunctor constructions such as the ''E''-theory and the bivariant periodic c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator K-theory
In mathematics, operator K-theory is a noncommutative analogue of topological K-theory for Banach algebras with most applications used for C*-algebras. Overview Operator K-theory resembles topological K-theory more than algebraic K-theory. In particular, a Bott periodicity theorem holds. So there are only two K-groups, namely ''K''0, which is equal to algebraic ''K''0, and ''K''1. As a consequence of the periodicity theorem, it satisfies excision. This means that it associates to an extension of C*-algebras to a long exact sequence, which, by Bott periodicity, reduces to an exact cyclic 6-term-sequence. Operator K-theory is a generalization of topological K-theory, defined by means of vector bundles on locally compact Hausdorff spaces. Here, a vector bundle over a topological space ''X'' is associated to a projection in the C* algebra of matrix-valued—that is, M_n(\mathbb)-valued—continuous functions over ''X''. Also, it is known that isomorphism of vector bundles transla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noncommutative Topology
In mathematics, noncommutative topology is a term used for the relationship between topological and C*-algebraic concepts. The term has its origins in the Gelfand–Naimark theorem, which implies the duality of the category of locally compact Hausdorff spaces and the category of commutative C*-algebras. Noncommutative topology is related to analytic noncommutative geometry. Examples The premise behind noncommutative topology is that a noncommutative C*-algebra can be treated like the algebra of complex-valued continuous functions on a 'noncommutative space' which does not exist classically. Several topological properties can be formulated as properties for the C*-algebras without making reference to commutativity or the underlying space, and so have an immediate generalization. Among these are: * compactness ( unital) * σ-compactness ( σ-unital) * dimension (real or stable rank) * connectedness ( projectionless) * extremally disconnected spaces (AW*-algebras) Individual ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cap Product
In algebraic topology the cap product is a method of adjoining a chain of degree ''p'' with a cochain of degree ''q'', such that ''q'' ≤ ''p'', to form a composite chain of degree ''p'' − ''q''. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938. Definition Let ''X'' be a topological space and ''R'' a coefficient ring. The cap product is a bilinear map on singular homology and cohomology :\frown\;: H_p(X;R)\times H^q(X;R) \rightarrow H_(X;R). defined by contracting a singular chain \sigma : \Delta\ ^p \rightarrow\ X with a singular cochain \psi \in C^q(X;R), by the formula : : \sigma \frown \psi = \psi(\sigma, _) \sigma, _. Here, the notation \sigma, _ indicates the restriction of the simplicial map \sigma to its face spanned by the vectors of the base, see Simplex. Interpretation In analogy with the interpretation of the cup product in terms of the Künneth formula, we can explain the existence of the cap product in the following w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cup Product
In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree ''p'' and ''q'' to form a composite cocycle of degree ''p'' + ''q''. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space ''X'' into a graded ring, ''H''∗(''X''), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944. Definition In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring ''H''∗(''X'') of a topological space ''X''. The construction starts with a product of cochains: if \alpha^p is a ''p''-cochain and \beta^q is a ''q''-cochain, then :(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_) \cdot \beta^q(\sigma \circ \iota_) where σ is a singular (''p'' + ''q'') -simplex and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bott Periodicity
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by , which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory. There are corresponding period-8 phenomena for the matching theories, (real number, real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. '' Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joachim Cuntz
Joachim Cuntz (born 28 September 1948 in Mannheim) is a German mathematician, currently a professor at the University of Münster. Work Joachim Cuntz has made fundamental contributions to the area of C*-algebras and to the field of noncommutative geometry in the sense of Alain Connes. He initiated the analysis of the structure of simple C*-algebras and introduced new methods and examples, including the Cuntz algebras and the Cuntz semigroup. He was one of the first to apply K-theory to noncommutative operator algebras and contributed to the development of that theory. In collaboration with Daniel Quillen, he developed a new approach to cyclic cohomology and proved the excision property of periodic cyclic theory. In recent years, he has been working mainly on C*-algebras that are related to structures from number theory. Joachim Cuntz had dozens of PhD students and research assistants, many of which are professors in mathematics today. Among them are: * Xin Li (PhD 2010, pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hilbert Module
Hilbert C*-modules are mathematical objects that generalise the notion of a Hilbert space (which itself is a generalisation of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras (though Kaplansky observed that the assumption of a unit element was not "vital"). In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke and Marc Rieffel, the latter in a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras. Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory, and provide the right framework to extend the notion of Morita equivalence to C*-algebras. They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]