E-carrier Level 1
   HOME
*





E-carrier Level 1
The E-carrier is a member of the series of carrier systems developed for digital transmission of many simultaneous telephone calls by time-division multiplexing. The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardized the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). It was widely used in almost all countries outside the US, Canada, and Japan. E-carrier deployments have steadily been replaced by Ethernet as telecommunication networks transition towards all IP. E1 frame structure An E1 link operates over two separate sets of wires, usually unshielded twisted pair (balanced cable) or using coaxial (unbalanced cable). A nominal 3 volt peak signal is encoded with pulses using a method avoiding long periods without polarity changes. The line data rate is 2.048 Mbit/s ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carrier System
A carrier system is a telecommunications system that transmits information, such as the voice signals of a telephone call and the video signals of television, by modulation of one or multiple carrier signals above the principal voice frequency or data rate.Western Electric (1969) ''Fundamentals of Telephone Communication Systems'', p.16.2 Carrier systems typically transmit multiple channels of communication simultaneously over the shared medium using various forms of multiplexing. Prominent multiplexing methods of the carrier signal are time-division multiplexing (TDM) and frequency-division multiplexing (FDM). A cable television system is an example of frequency-division multiplexing. Many television programs are carried simultaneously on the same coaxial cable by sending each at a different frequency. Multiple layers of multiplexing may ultimately be performed upon a given input signal. For example, in the public switched telephone network, many telephone calls are sent over sha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Redundancy Check
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short ''check value'' attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption. CRCs can be used for error correction (see bitfilters). CRCs are so called because the ''check'' (data verification) value is a ''redundancy'' (it expands the message without adding information) and the algorithm is based on ''cyclic'' codes. CRCs are popular because they are simple to implement in binary hardware, easy to analyze mathematically, and particularly good at detecting common errors caused by noise in transmission channels. Because the check value has a fixed length, the function that generates it is occasionally used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clos Network
In the field of telecommunications, a Clos network is a kind of multistage circuit-switching network which represents a theoretical idealization of practical, multistage switching systems. It was invented by Edson Erwin in 1938 and first formalized by Charles Clos () in 1952. By adding stages, a Clos network reduces the number of crosspoints required to compose a large crossbar switch. A Clos network topology (diagrammed below) is parameterized by three integers ''n'', ''m'', and ''r'': ''n'' represents the number of sources which feed into each of ''r'' ingress stage crossbar switches; each ingress stage crossbar switch has ''m'' outlets; and there are ''m'' middle stage crossbar switches. Circuit switching arranges a dedicated communications path for a connection between endpoints for the duration of the connection. This sacrifices total bandwidth available if the dedicated connections are poorly utilized, but makes the connection and bandwidth more predictable, and only introd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nonblocking Minimal Spanning Switch
A nonblocking minimal spanning switch is a device that can connect N inputs to N outputs in any combination. The most familiar use of switches of this type is in a telephone exchange. The term "non-blocking" means that if it is not defective, it can always make the connection. The term "minimal" means that it has the fewest possible components, and therefore the minimal expense. Historically, in telephone switches, connections between callers were arranged with large, expensive banks of electromechanical relays, Strowger switches. The basic mathematical property of Strowger switches is that for each input to the switch, there is exactly one output. Much of the mathematical switching circuit theory attempts to use this property to reduce the total number of switches needed to connect a combination of inputs to a combination of outputs. In the 1940s and 1950s, engineers in Bell Lab began an extended series of mathematical investigations into methods for reducing the size and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time-division Multiplexing
Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. This method transmits two or more digital signals or analog signals over a common channel. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century. History Time-division multiplexing was first developed for applications in telegraphy to route multiple transmissions simultaneously over a single transmission line. In the 1870s, Émile Baudot developed a time-multiplexing system of multiple Hughes telegraph machines. In 1944, the Britis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


STM-1
The STM-1 (Synchronous Transport Module level-1) is the SDH ITU-T fiber optic network transmission standard. It has a bit rate of 155.52 Mbit/s. Higher levels go up by a factor of 4 at a time: the other currently supported levels are STM-4, STM-16, STM-64 and STM-256. Above STM-256 wavelength-division multiplexing (WDM) is commonly used in submarine cabling. Frame structure The STM-1 frame is on the basic transmission format for SDH SDH may refer to: Science, medicine and technology * Serine dehydratase, an enzyme * L-sorbose 1-dehydrogenase, an enzyme * Succinate dehydrogenase, an enzyme * Shubnikov–de Haas effect * Social Determinants of Health, economic and social condi ... (Synchronous Digital Hierarchy). An STM-1 frame has a byte-oriented structure with 9 rows and 270 columns of bytes, for a total of 2,430 bytes (9 rows * 270 columns = 2430 bytes). Each byte corresponds to a 64kbit/s channel.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Device Bandwidths
This is a list of interface bit rates, is a measure of information transfer rates, or digital bandwidth capacity, at which digital interfaces in a computer or network can communicate over various kinds of buses and channels. The distinction can be arbitrary between a ''computer bus'', often closer in space, and larger telecommunications networks. Many device interfaces or protocols (e.g., SATA, USB, SAS, PCIe) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table. Factors limiting actual performance, criteria for real decisions Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), physical or temporal distances, and other overhead in data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HDB3
Modified AMI codes are a digital telecommunications technique to maintain system synchronization. Alternate mark inversion (AMI) line codes are modified by deliberate insertion of bipolar violations. There are several types of modified AMI codes, used in various T-carrier and E-carrier systems. Overview The clock rate of an incoming T-carrier is extracted from its bipolar line code. Each signal transition provides an opportunity for the receiver to see the transmitter's clock. The AMI code guarantees that transitions are always present before and after each mark (1 bit), but are missing between adjacent spaces (0 bits). To prevent loss of synchronization when a long string of zeros is present in the payload, deliberate bipolar violations are inserted into the line code, to create a sufficient number of transitions to maintain synchronization; this is a form of run length limited coding. The receive terminal equipment recognizes the bipolar violations and removes from the user data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Digital Signal 1
Digital Signal 1 (DS1, sometimes DS-1) is a T-carrier signaling scheme devised by Bell Labs. DS1 is the primary digital telephone standard used in the United States, Canada and Japan and is able to transmit up to 24 multiplexed voice and data calls over telephone lines. E-carrier is used in place of T-carrier outside the United States, Canada, Japan, and South Korea. DS1 is the logical bit pattern used over a physical T1 line; in practice, the terms ''DS1'' and ''T1'' are often used interchangeably. Overview T1 refers to the primary digital telephone carrier system used in North America. T1 is one line type of the PCM T-carrier hierarchy. T1 describes the cabling, signal type, and signal regeneration requirements of the carrier system. The signal transmitted on a T1 line, referred to as the DS1 signal, consists of serial bits transmitted at the rate of 1.544 Mbit/s. The type of line code used is called Alternate Mark Inversion (AMI). Digital Signal Designation is the classifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Digital Signal 0
Digital Signal 0 (DS0) is a basic digital signaling rate of 64 kilobits per second (kbit/s), corresponding to the capacity of one analog voice-frequency-equivalent communication channel. The DS0 rate, and its equivalents E0 in the E-carrier system and T0 in the T-carrier system, form the basis for the digital multiplex transmission hierarchy in telecommunications systems used in North America, Europe, Japan, and the rest of the world, for both the early plesiochronous systems such as T-carrier and for modern synchronous systems such as SDH/SONET. The DS0 rate was introduced to carry a single digitized voice call. For a typical phone call, the audio sound is digitized at an 8 kHz sample rate, or 8000 samples per second, using 8-bit pulse-code modulation for each of the samples. This results in a data rate of 64 kbit/s. Because of its fundamental role in carrying a single phone call, the DS0 rate forms the basis for the digital multiplex transmission hierarchy in telecommunications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplexing
In telecommunications and computer networking, multiplexing (sometimes contracted to muxing) is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource - a physical transmission medium. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy in the 1870s, and is now widely applied in communications. In telephony, George Owen Squier is credited with the development of telephone carrier multiplexing in 1910. The multiplexed signal is transmitted over a communication channel such as a cable. The multiplexing divides the capacity of the communication channel into several logical channels, one for each message signal or data stream to be transferred. A reverse process, known as demultiplexing, extracts the original channels on the receiver end. A device that performs the multiplexing is called a multiplexer (MUX), and a dev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plesiochronous Digital Hierarchy
The plesiochronous digital hierarchy (PDH) is a technology used in telecommunications networks to transport large quantities of data over digital transport equipment such as fibre optic and microwave radio systems. The term ''plesiochronous'' is derived from Greek ''plēsios'', meaning near, and ''chronos'', time, and refers to the fact that PDH networks run in a state where different parts of the network are nearly, but not quite perfectly, synchronized. Backbone transport networks replaced PDH networks with synchronous digital hierarchy (SDH) or synchronous optical networking (SONET) equipment over the ten years ending around the turn of the millennium (2000), whose floating payloads relaxed the more stringent timing requirements of PDH network technology. The cost in North America was $4.5 billion in 1998 alone, p. 171. PDH allows transmission of data streams that are nominally running at the same rate, but allowing some variation on the speed around a nominal rate. By ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]