Dynamical Time Scale
   HOME
*





Dynamical Time Scale
In time standards, dynamical time is the independent variable of the equations of celestial mechanics. This is in contrast to time scales such as mean solar time which are based on how far the earth has turned. Since Earth's rotation is not constant, using a time scale based on it for calculating the positions of heavenly objects gives errors. Dynamical time can be inferred from the observed position of an astronomical object via a theory of its motion. A first application of this concept of dynamical time was the definition of the ephemeris time scale (ET). at p.304 In the late 19th century it was suspected, and in the early 20th century it was established, that the rotation of the Earth (''i.e.'' the length of the day) was both irregular on short time scales, and was slowing down on longer time scales. The suggestion was made, that observation of the position of the Moon, Sun and planets and comparison of the observations with their gravitational ephemerides would be a bett ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deviation Of Day Length From SI Day
Deviation may refer to: Mathematics and engineering * Allowance (engineering), an engineering and machining allowance is a planned deviation between an actual dimension and a nominal or theoretical dimension, or between an intermediate-stage dimension and an intended final dimension. * Deviation (statistics), the difference between the value of an observation and the mean of the population in mathematics and statistics ** Standard deviation, which is based on the square of the difference ** Absolute deviation, where the absolute value of the difference is used ** Relative standard deviation, in probability theory and statistics is the absolute value of the coefficient of variation * Deviation of a local ring in mathematics * Deviation of a poset in mathematics * Frequency deviation, the maximum allowed "distance" in FM radio from the nominal frequency a station broadcasts at * Magnetic deviation, the error induced in compasses by local magnetic fields Albums * ''Deviation'' ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caesium
Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at . It is the least electronegative element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. The element has 40 known isotopes, making it, along with barium and mercury, one of the elements with the most isotopes. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. The German chemist Robert Bunsen and physicist Gustav Kirchhoff discovered caesium in 1860 by the newly developed method of flame spectroscopy. The first small-scale applications for caesium ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leap Second
A leap second is a one-second adjustment that is occasionally applied to Coordinated Universal Time (UTC), to accommodate the difference between precise time (International Atomic Time (TAI), as measured by atomic clocks) and imprecise observed solar time (UT1), which varies due to irregularities and long-term slowdown in the Earth's rotation. The UTC time standard, widely used for international timekeeping and as the reference for civil time in most countries, uses TAI and consequently would run ahead of observed solar time unless it is reset to UT1 as needed. The leap second facility exists to provide this adjustment. The leap second was introduced in 1972 and since then 27 leap seconds have been added to UTC. Because the Earth's rotation speed varies in response to climatic and geological events, UTC leap seconds are irregularly spaced and unpredictable. Insertion of each UTC leap second is usually decided about six months in advance by the International Earth Rotation and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terrestrial Time
Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses TT for its tables of positions (ephemerides) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time (TDT or TD),TT is equivalent to TDT, see IAU conference 1991, Resolution A4, recommendation IV, note 4. which succeeded ephemeris time (ET). TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth. The unit of TT is the SI second, the definition of which is based currently on the caesium atomic clock,IAU conference 1991, Resolution A4, recommendation IV, part 2 states that the unit for TT is to agree with the SI second 'on the geoid'. but TT is not itself defined by atomic clocks. It is a theoretical ideal, and real clocks can only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barycentric Coordinate Time
Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and interplanetary spacecraft in the Solar System. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the barycenter (center of mass) of the Solar System: that is, a clock that performs exactly the same movements as the Solar System but is outside the system's gravity well. It is therefore not influenced by the gravitational time dilation caused by the Sun and the rest of the system. TCB is the time coordinate for the Barycentric Celestial Reference System (BCRS). TCB was defined in 1991 by the International Astronomical Union, in Recommendation III of the XXIst General Assembly. It was intended as one of the replacements for the problematic 1976 definition of Barycentric Dynamical Time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Geocentric Coordinate Time
Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satellites of the Earth. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the center of the Earth: that is, a clock that performs exactly the same movements as the Earth but is outside the Earth's gravity well. It is therefore not influenced by the gravitational time dilation caused by the Earth. The TCG is the time coordinate for the Geocentric Celestial Reference System (GCRS). TCG was defined in 1991 by the International Astronomical Union. Unlike former astronomical time scales, TCG is defined in the context of the general theory of relativity. The relationships between TCG and other relativistic time scales are defined with fully general relativistic metrics. Because the reference fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terrestrial Dynamical Time
Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses TT for its tables of positions (ephemerides) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time (TDT or TD),TT is equivalent to TDT, see IAU conference 1991, Resolution A4, recommendation IV, note 4. which succeeded ephemeris time (ET). TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth. The unit of TT is the SI second, the definition of which is based currently on the caesium atomic clock,IAU conference 1991, Resolution A4, recommendation IV, part 2 states that the unit for TT is to agree with the SI second 'on the geoid'. but TT is not itself defined by atomic clocks. It is a theoretical ideal, and real clocks can only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barycentric Dynamical Time
Barycentric Dynamical Time (TDB, from the French ) is a relativistic coordinate time scale, intended for astronomical use as a time standard to take account of time dilation when calculating orbits and astronomical ephemerides of planets, asteroids, comets and interplanetary spacecraft in the Solar System. TDB is now (since 2006) defined as a linear scaling of Barycentric Coordinate Time (TCB). A feature that distinguishes TDB from TCB is that TDB, when observed from the Earth's surface, has a difference from Terrestrial Time (TT) that is about as small as can be practically arranged with consistent definition: the differences are mainly periodic,The periodic differences, due to relativistic effects, between a coordinate time scale applicable to the Solar-System barycenter, and time measured at the Earth's surface, were first estimated and are explained in: G M Clemence & V Szebehely"Annual variation of an atomic clock" Astronomical Journal, Vol.72 (1967), p.1324-6. and overall w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International Astronomical Union
The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and development through global cooperation. It was founded in 1919 and is based in Paris, France. The IAU is composed of individual members, who include both professional astronomers and junior scientists, and national members, such as professional associations, national societies, or academic institutions. Individual members are organised into divisions, committees, and working groups centered on particular subdisciplines, subjects, or initiatives. As of 2018, the Union had over 13,700 individual members, spanning 90 countries, and 82 national members. Among the key activities of the IAU is serving as a forum for scientific conferences. It sponsors nine annual symposia and holds a triannual General Assembly that sets policy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Clocks
An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, \Delta \nu_\mathsf, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be when expressed in the unit Hz, which is equal to s−1. This definition is the basis for the system of International Atomic Time (TAI), which is maintained by an ensemble of atomic clocks around the world. The system of Coordinated Universal Time (UTC) that is the basis of civil time implements leap seconds to allow cloc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

January 0
Several non-standard dates are used in calendars. Some are used sarcastically, some for scientific or mathematical purposes, and some for exceptional or fictional calendars. January 0 January 0 or 0 January is an alternative name for December 31. In an ephemeris January 0 is the day before January 1 in an annual ephemeris. It keeps the date in the year for which the ephemeris was published, thus avoiding any reference to the previous year, even though it is the same day as December 31 of the previous year. January 0 also occurs in the epoch for the ephemeris second, "1900 January 0 at 12 hours ephemeris time". 1900 January 0 (at Greenwich Mean Noon) was also the epoch used by Newcomb's ''Tables of the Sun'', which became the epoch for the Dublin Julian day. In software In Microsoft Excel, the epoch of the 1900 date format is January 0, 1900. February 30 February 30 or 30 February is a date that does not occur on the Gregorian calendar, where the month of February contains o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Standards
A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day. Standardized time measurements are made using a clock to count periods of some period changes, which may be either the changes of a natural phenomenon or of an artificial machine. Historically, time standards were often based on the Earth's rotational period. From the late 18 century to the 19th century it was assumed that the Earth's daily rotational rate was constant. Astronomical observations of several kinds, including eclipse records, studied in the 19th century, raised suspicions that the rate at which Earth rotates is gradua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]