Dualizing Sheaf
   HOME
*





Dualizing Sheaf
In algebraic geometry, the dualizing sheaf on a proper scheme ''X'' of dimension ''n'' over a field ''k'' is a coherent sheaf \omega_X together with a linear functional :t_X: \operatorname^n(X, \omega_X) \to k that induces a natural isomorphism of vector spaces :\operatorname_X(F, \omega_X) \simeq \operatorname^n(X, F)^*, \, \varphi \mapsto t_X \circ \varphi for each coherent sheaf ''F'' on ''X'' (the superscript * refers to a dual vector space). The linear functional t_X is called a trace morphism. A pair (\omega_X, t_X), if it is exists, is unique up to a natural isomorphism. In fact, in the language of category theory, \omega_X is an object representing the contravariant functor F \mapsto \operatorname^n(X, F)^* from the category of coherent sheaves on ''X'' to the category of ''k''-vector spaces. For a normal projective variety ''X'', the dualizing sheaf exists and it is in fact the canonical sheaf: \omega_X = \mathcal_X(K_X) where K_X is a canonical divisor. More generally, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X-modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is an ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Morphism
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dualizing Module
In abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality. Definition A dualizing module for a Noetherian ring ''R'' is a finitely generated module ''M'' such that for any maximal ideal ''m'', the ''R''/''m'' vector space vanishes if ''n'' ≠ height(''m'') and is 1-dimensional if ''n'' = height(''m''). A dualizing module need not be unique because the tensor product of any dualizing module with a rank 1 projective module is also a dualizing module. However this is the only way in which the dualizing module fails to be unique: given any two dualizing modules, one is isomorphic to the tensor product of the other with a rank 1 projective module. In particular if the ring is local the dualizing module is unique up to isomorphism. A Noetherian ring does not necessarily have a dualizing module. Any ring with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gorenstein Ring
In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring ''R'' with finite injective dimension as an ''R''-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense. Gorenstein rings were introduced by Grothendieck in his 1961 seminar (published in ). The name comes from a duality property of singular plane curves studied by (who was fond of claiming that he did not understand the definition of a Gorenstein ring). The zero-dimensional case had been studied by . and publicized the concept of Gorenstein rings. Frobenius rings are noncommutative analogs of zero-dimensional Gorenstein rings. Gorenstein schemes are the geometric version of Gorenstein rings. For Noetherian local rings, there is the following chain of inclusions. Definitions A Gorenstein ring is a commutative Noetherian ring such that each localization at a prime ideal is a Gorenstein local ring, as defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Sheaf
In algebraic geometry, a reflexive sheaf is a coherent sheaf that is isomorphic to its second dual (as a sheaf of modules) via the canonical map. The second dual of a coherent sheaf is called the reflexive hull of the sheaf. A basic example of a reflexive sheaf is a locally free sheaf of finite rank and, in practice, a reflexive sheaf is thought of as a kind of a vector bundle modulo some singularity. The notion is important both in scheme theory and complex algebraic geometry. For the theory of reflexive sheaves, one works over an integral noetherian scheme. A reflexive sheaf is torsion-free. The dual of a coherent sheaf is reflexive. Usually, the product of reflexive sheaves is defined as the reflexive hull of their tensor products (so the result is reflexive.) A coherent sheaf ''F'' is said to be "normal" in the sense of Barth if the restriction F(U) \to F(U - Y) is bijective for every open subset ''U'' and a closed subset ''Y'' of ''U'' of codimension at least 2. With this te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Duality
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent. Then according to a general principle, Grothendieck's relative point of view, the theory of Jean-Pierre Serre was extended to a proper morphism; Serre duality was recovered as the case of the morphism of a non-singular projective variety (or complete variety) to a point. The resulting theory is now sometimes called Serre–Grothendieck–Verdier duality, and is a basic tool in algebraic geometry. A treatment of this theory, ''Residues and Duality'' (1966) by Robin Hartsho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Space Of Curves
In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem. The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends"). Moduli stacks of stable curves The moduli stack \mathcal_ classifies families of smooth projective curves, together with their isomorphisms. Whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hodge Bundle
In mathematics, the Hodge bundle, named after W. V. D. Hodge, appears in the study of families of curves, where it provides an invariant in the moduli theory of algebraic curves. Furthermore, it has applications to the theory of modular forms on reductive algebraic groups and string theory. Definition Let \mathcal_g be the moduli space of algebraic curves of genus ''g'' curves over some scheme. The Hodge bundle \Lambda_g is a vector bundleHere, "vector bundle" in the sense of quasi-coherent sheaf on an algebraic stack on \mathcal_g whose fiber at a point ''C'' in \mathcal_g is the space of holomorphic differentials on the curve ''C''. To define the Hodge bundle, let \pi\colon \mathcal_g\rightarrow\mathcal_g be the universal algebraic curve of genus ''g'' and let \omega_g be its relative dualizing sheaf. The Hodge bundle is the pushforward The notion of pushforward in mathematics is "dual" to the notion of pullback, and can mean a number of different but closely related things. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion). Definition Riemannian manifold Let (M,g) be a Riemannian manifold, and S \subset M a Riemannian submanifold. Define, for a given p \in S, a vector n \in \mathrm_p M to be ''normal'' to S whenever g(n,v)=0 for all v\in \mathrm_p S (so that n is orthogonal to \mathrm_p S). The set \mathrm_p S of all such n is then called the ''normal space'' to S at p. Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle \mathrm S to S is defined as :\mathrmS := \coprod_ \mathrm_p S. The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle. General definition More abstractly, given an immersion i: N \to M (for instance an embeddin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Of Relative Kähler Differentials
Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics), a mathematical tool * Sheaf toss, a Scottish sport * River Sheaf, a tributary of River Don in England * ''The Sheaf'', a student-run newspaper serving the University of Saskatchewan * Aluma, a settlement in Israel whose name translates as ''Sheaf'' See also

* Sceafa, a king of English legend * Sheath (other) * Sheave, a wheel or roller with a groove along its edge for holding a belt, rope or cable {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Embedding
In algebraic geometry, a closed immersion i: X \hookrightarrow Y of schemes is a regular embedding of codimension ''r'' if each point ''x'' in ''X'' has an open affine neighborhood ''U'' in ''Y'' such that the ideal of X \cap U is generated by a regular sequence of length ''r''. A regular embedding of codimension one is precisely an effective Cartier divisor. Examples and usage For example, if ''X'' and ''Y'' are smooth over a scheme ''S'' and if ''i'' is an ''S''-morphism, then ''i'' is a regular embedding. In particular, every section of a smooth morphism is a regular embedding. If \operatornameB is regularly embedded into a regular scheme, then ''B'' is a complete intersection ring. The notion is used, for instance, in an essential way in Fulton's approach to intersection theory. The important fact is that when ''i'' is a regular embedding, if ''I'' is the ideal sheaf of ''X'' in ''Y'', then the normal sheaf, the dual of I/I^2, is locally free (thus a vector bundle) and the na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Vector Space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]