Dirac–von Neumann Axioms
   HOME
*





Dirac–von Neumann Axioms
In mathematical physics, the Dirac–von Neumann axioms give a mathematical formulation of quantum mechanics in terms of operators on a Hilbert space. They were introduced by Paul Dirac in 1930 and John von Neumann in 1932. Hilbert space formulation The space \mathbb is a fixed complex Hilbert space of countably infinite dimension. * The observables of a quantum system are defined to be the (possibly unbounded) self-adjoint operators A on \mathbb. * A state \psi of the quantum system is a unit vector of \mathbb, up to scalar multiples; or equivalently, a ray of the Hilbert space \mathbb. * The expectation value of an observable ''A'' for a system in a state \psi is given by the inner product \langle \psi, A \psi \rangle. Operator algebra formulation The Dirac–von Neumann axioms can be formulated in terms of a C*-algebra as follows. * The bounded observables of the quantum mechanical system are defined to be the self-adjoint elements of the C*-algebra. * The states of the qua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction vector'', commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere. The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e., :\mathbf = \frac where , u, is the norm (or length) of u. The term ''normalized vector'' is sometimes used as a synonym for ''unit vector''. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination of unit vectors. Orthogonal coordinates Cartesian coordinates Unit vectors may be us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Algebras
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are phrased in algebraic terms, while the techniques used are highly analytic.''Theory of Operator Algebras I'' By Masamichi Takesaki, Springer 2012, p vi Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory. Overview Operator algebras can be used to study arbitrary sets of operators with little algebraic relation ''simultaneously''. From this point of view, operator algebras can be regarded as a generalization of spectral theory of a single operator. In general operator algebras are non-commutative rings. An operator alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Foundations Of Quantum Mechanics
The book ''Mathematical Foundations of Quantum Mechanics'' (1932) by John von Neumann is an important early work in the development of quantum theory. Publication history The book was originally published in German in 1932 by Julius Springer, under the title . An English translation by Robert T. Beyer was published in 1955 by Princeton University Press. A Russian translation, edited by N. Bogolyubov, was published by Nauka in 1964. A new English edition, edited by Nicholas A. Wheeler, was published in 2018 by Princeton University Press. Significance The book mainly summarizes results that von Neumann had published in earlier papers. Its main significance may be its argument against the idea of hidden variables, on thermodynamic grounds. See also * Mathematical formulation of quantum mechanics * '' Quantum Theory: Concepts and Methods'' References External links {{wikiquote Full online textof the 1932 German edition (facsimile) at the University of Göttingen The Univers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon (199 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




The Principles Of Quantum Mechanics
''The Principles of Quantum Mechanics'' is an influential monograph on quantum mechanics written by Paul Dirac and first published by Oxford University Press in 1930. Dirac gives an account of quantum mechanics by "demonstrating how to construct a completely new theoretical framework from scratch"; "problems were tackled top-down, by working on the great principles, with the details left to look after themselves". It leaves classical physics behind after the first chapter, presenting the subject with a logical structure. Its 82 sections contain 785 equations with no diagrams. Dirac is credited with developing the subject "particularly in Cambridge and Göttingen between 1925–1927" (Farmelo). History The first and second editions of the book were published in 1930 and 1935. In 1947 the third edition of the book was published, in which the chapter on quantum electrodynamics was rewritten particularly with the inclusion of electron-positron creation. In the fourth edition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiomatic Quantum Field Theory
Axiomatic quantum field theory is a mathematical discipline which aims to describe quantum field theory in terms of rigorous axioms. It is strongly associated with functional analysis and operator algebras, but has also been studied in recent years from a more geometric and functorial perspective. There are two main challenges in this discipline. First, one must propose a set of axioms which describe the general properties of any mathematical object that deserves to be called a "quantum field theory". Then, one gives rigorous mathematical constructions of examples satisfying these axioms. Analytic approaches Wightman axioms The first set of axioms for quantum field theories, known as the Wightman axioms, were proposed by Arthur Wightman in the early 1950s. These axioms attempt to describe QFTs on flat Minkowski spacetime by regarding quantum fields as operator-valued distributions acting on a Hilbert space. In practice, one often uses the Wightman reconstruction theorem, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


State (functional Analysis)
In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states, both . Density matrices in turn generalize state vectors, which only represent pure states. For ''M'' an operator system in a C*-algebra ''A'' with identity, the set of all states of'' ''M, sometimes denoted by S(''M''), is convex, weak-* closed in the Banach dual space ''M''*. Thus the set of all states of ''M'' with the weak-* topology forms a compact Hausdorff space, known as the state space of ''M'' . In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected measurement outcome (real number). Jordan decomposition States can be viewed as noncommutative generalizations of probability measures. By Gel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inner Product Space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in \langle a, b \rangle. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or ''scalar product'' of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898. An inner product naturally induces an associated norm, (denoted , x, and , y, in the picture); so, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Expectation Value (quantum Mechanics)
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the ''most'' probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which can only yield integer values may have a non-integer mean). It is a fundamental concept in all areas of quantum physics. Operational definition Consider an operator A. The expectation value is then \langle A \rangle = \langle \psi , A , \psi \rangle in Dirac notation with , \psi \rangle a normalized state vector. Formalism in quantum mechanics In quantum theory, an experimental setup is described by the observable A to be measured, and the state \sigma of the system. The expectation value of A in the state \sigma is denoted as \langle A \rangle_\sigma. Mathematically, A is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Hilbert Space
In mathematics and the foundations of quantum mechanics, the projective Hilbert space P(H) of a complex Hilbert space H is the set of equivalence classes of non-zero vectors v in H, for the relation \sim on H given by :w \sim v if and only if v = \lambda w for some non-zero complex number \lambda. The equivalence classes of v for the relation \sim are also called rays or projective rays. This is the usual construction of projectivization, applied to a complex Hilbert space. Overview The physical significance of the projective Hilbert space is that in quantum theory, the wave functions \psi and \lambda \psi represent the same ''physical state'', for any \lambda \ne 0. It is conventional to choose a \psi from the ray so that it has unit norm, \langle\psi, \psi\rangle = 1, in which case it is called a normalized wavefunction. The unit norm constraint does not completely determine \psi within the ray, since \psi could be multiplied by any \lambda with absolute value 1 (the U(1) action ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]