Diffiety
   HOME
*



picture info

Diffiety
In mathematics, a diffiety () is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. The term was coined in 1984 by Alexandre Mikhailovich Vinogradov as portmanteau from differential variety. Intuitive definition In algebraic geometry the main objects of study (varieties) model the space of solutions of a system of algebraic equations (i.e. the zero locus of a set of polynomials), together with all their "algebraic consequences". This means that, applying algebraic operations to this set (e.g. adding those polynomials to each other or multiplying them with any other polynomials) will give rise to the same zero locus. In other words, one can actually consider the zero locus of the algebraic ideal generated by the initial set of polynomials. When dealing with differential equations, apart from applying algebraic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alexandre Mikhailovich Vinogradov
Alexandre Mikhailovich Vinogradov (russian: Александр Михайлович Виноградов; 18 February 1938 – 20 September 2019) was a Russian and Italian mathematician. He made important contributions to the areas of differential calculus over commutative algebras, the algebraic theory of differential operators, homological algebra, differential geometry and algebraic topology, mechanics and mathematical physics, the geometrical theory of nonlinear partial differential equations and secondary calculus. Biography A.M. Vinogradov was born on 18 February 1938 in Novorossiysk. His father, Mikhail Ivanovich Vinogradov, was a hydraulics scientist; his mother, Ilza Alexandrovna Firer, was a medical doctor. Among his more distant ancestors, his great-grandfather, Anton Smagin, was a self-taught peasant and a deputy of the State Duma of the second convocation. Between 1955 and 1960 Vinogradov studied at the Mechanics and Mathematics Department of Moscow State Univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jet Bundle
In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing ''geometrically'' with higher derivatives, by imposing differential form conditions on newly introduced formal variables. Jet bundles are sometimes called sprays, although sprays usually refer more specifically to the associated vector field induced on the corresponding bundle (e.g., the geodesic spray on Finsler manifolds.) Since the early 1980s, jet bundles have appeared as a concise way to describe phenomena associated with the derivatives of maps, particularly those associated with the calculus of variations. Consequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jet Bundle
In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing ''geometrically'' with higher derivatives, by imposing differential form conditions on newly introduced formal variables. Jet bundles are sometimes called sprays, although sprays usually refer more specifically to the associated vector field induced on the corresponding bundle (e.g., the geodesic spray on Finsler manifolds.) Since the early 1980s, jet bundles have appeared as a concise way to describe phenomena associated with the derivatives of maps, particularly those associated with the calculus of variations. Consequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differentiable Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dense Set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X either ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jet (mathematics)
In mathematics, the jet is an operation that takes a differentiable function ''f'' and produces a polynomial, the truncated Taylor polynomial of ''f'', at each point of its domain. Although this is the definition of a jet, the theory of jets regards these polynomials as being abstract polynomials rather than polynomial functions. This article first explores the notion of a jet of a real valued function in one real variable, followed by a discussion of generalizations to several real variables. It then gives a rigorous construction of jets and jet spaces between Euclidean spaces. It concludes with a description of jets between manifolds, and how these jets can be constructed intrinsically. In this more general context, it summarizes some of the applications of jets to differential geometry and the theory of differential equations. Jets of functions between Euclidean spaces Before giving a rigorous definition of a jet, it is useful to examine some special cases. One-dimensional cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Section (fiber Bundle)
In the mathematical field of topology, a section (or cross section) of a fiber bundle E is a continuous right inverse of the projection function \pi. In other words, if E is a fiber bundle over a base space, B: : \pi \colon E \to B then a section of that fiber bundle is a continuous map, : \sigma \colon B \to E such that : \pi(\sigma(x)) = x for all x \in B . A section is an abstract characterization of what it means to be a graph. The graph of a function g\colon B \to Y can be identified with a function taking its values in the Cartesian product E = B \times Y , of B and Y : :\sigma\colon B\to E, \quad \sigma(x) = (x,g(x)) \in E. Let \pi\colon E \to B be the projection onto the first factor: \pi(x,y) = x . Then a graph is any function \sigma for which \pi(\sigma(x)) = x . The language of fibre bundles allows this notion of a section to be generalized to the case when E is not necessarily a Cartesian product. If \pi\colon E \to B is a fibre bundle, then a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Of A Function
In mathematics, the graph of a function f is the set of ordered pairs (x, y), where f(x) = y. In the common case where x and f(x) are real numbers, these pairs are Cartesian coordinates of points in two-dimensional space and thus form a subset of this plane. In the case of functions of two variables, that is functions whose domain consists of pairs (x, y), the graph usually refers to the set of ordered triples (x, y, z) where f(x,y) = z, instead of the pairs ((x, y), z) as in the definition above. This set is a subset of three-dimensional space; for a continuous real-valued function of two real variables, it is a surface. In science, engineering, technology, finance, and other areas, graphs are tools used for many purposes. In the simplest case one variable is plotted as a function of another, typically using rectangular axes; see '' Plot (graphics)'' for details. A graph of a function is a special case of a relation. In the modern foundations of mathematics, and, typicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fibered Manifold
In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion \pi : E \to B\, that is, a surjective differentiable mapping such that at each point y \in U the tangent mapping T_y \pi : T_ E \to T_B is surjective, or, equivalently, its rank equals \dim B. History In topology, the words fiber (Faser in German) and fiber space (gefaserter Raum) appeared for the first time in a paper by Herbert Seifert in 1932, but his definitions are limited to a very special case. The main difference from the present day conception of a fiber space, however, was that for Seifert what is now called the base space (topological space) of a fiber (topological) space E was not part of the structure, but derived from it as a quotient space of E. The first definition of fiber space is given by Hassler Whitney in 1935 under the name sphere space, but in 1940 Whitney changed the name to sphere bundle. The theory of fibered spaces, of which vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]