Differentiation Of Integrals
   HOME
*





Differentiation Of Integrals
In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. More formally, given a space ''X'' with a measure ''μ'' and a metric ''d'', one asks for what functions ''f'' : ''X'' → R does \lim_ \frac1 \int_ f(y) \, \mathrm \mu(y) = f(x) for all (or at least ''μ''-almost all) ''x'' ∈ ''X''? (Here, as in the rest of the article, ''B''''r''(''x'') denotes the open ball in ''X'' with ''d''-radius ''r'' and centre ''x''.) This is a natural question to ask, especially in view of the heuristic construction of the Riemann integral, in which it is almost implicit that ''f''(''x'') is a "good representative" for the values of ''f'' near ''x''. Theorems on the differentiation of integrals Lebesgue measure One result on the differentiation of integrals is the Lebes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Integrable Function
In mathematics, a locally integrable function (sometimes also called locally summable function) is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain (at infinity if the domain is unbounded): in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions. Definition Standard definition .See for example and . Let be an open set in the Euclidean space \mathbb^n and be a Lebesgue measurable function. If on is such that : \int_K , f , \, \mathrmx <+\infty, i.e. its

picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differentiation Rules
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). Constant term rule For any value of c, where c \in \mathbb, if f(x) is the constant function given by f(x) = c, then \frac = 0. Proof Let c \in \mathbb and f(x) = c. By the definition of the derivative, :\begin f'(x) &= \lim_\frac \\ &= \lim_ \frac \\ &= \lim_ \frac \\ &= \lim_ 0 \\ &= 0 \end This shows that the derivative of any constant function is 0. Differentiation is linear For any functions f and g and any real numbers a and b, the derivative of the function h(x) = af(x) + bg(x) with respect to x is: h'(x) = a f'(x) + b g'(x). In Leibniz's notation this is written as: \frac = a\frac +b\fra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence In Measure
Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability. Definitions Let f, f_n\ (n \in \mathbb N): X \to \mathbb R be measurable functions on a measure space (X, \Sigma, \mu). The sequence f_n is said to converge globally in measure to f if for every \varepsilon > 0, :\lim_ \mu(\) = 0, and to converge locally in measure to f if for every \epsilon>0 and every F \in \Sigma with \mu (F) 0 there exists ''F'' in the family such that \mu(G\setminus F)<\varepsilon. When \mu(X) < \infty , we may consider only one metric \rho_X, so the topology of convergence in finite measure is metrizable. If \mu is an arbitrary measure finite or not, then : d(f,g) := \inf\limits_ \mu(\) + \delta still defines a metric that generates the global convergence in measure.Vladimir I. Bogachev, Measure Theory Vol. I, Springer Science & Business Media, 2007 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orthonormal Basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space \R^n is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for \R^n arises in this fashion. For a general inner product space V, an orthonormal basis can be used to define normalized orthogonal coordinates on V. Under these coordinates, the inner product becomes a dot product of vectors. Thus the presence of an orthonormal basis reduces the study of a finite-dimensional inner product space to the study of \R^n under dot product. Every finite-dimensional inner product space has an orthonormal basis, which may be ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative. The sign of the covariance therefore shows the tendency in the linear relationship between the variables. The magnitude of the covariance is not easy to interpret because it is not normalized and hence depends on the magnitudes of the variables. The normalized version of the covariance, the correlation coefficient, however, shows by its magnitude the strength of the linear relation. A distinction must be made between (1) the covariance of two random ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vitali Covering Theorem
In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali.. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset ''E'' of R''d'' by a disjoint family extracted from a ''Vitali covering'' of ''E''. Vitali covering lemma There are two basic version of the lemma, a finite version and an infinite version. Both lemmas can be proved in the general setting of a metric space, typically these results are applied to the special case of the Euclidean space \mathbb^d. In both theorems we will use the following notation: if B = B(x,r) is a ball and c \in \mathbb, we will write cB for the ball B(x,cr). Finite version Theorem (Finite Covering Lemma). Let B_, \dots, B_ be any finite col ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaussian Measure
In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space R''n'', closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the Germany, German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable ''X'' is obtained by summing a large number ''N'' of independent random variables of order 1, then ''X'' is of order \sqrt and its law is approximately Gaussian. Definitions Let ''n'' ∈ N and let ''B''0(R''n'') denote the complete measure, completion of the Borel sigma algebra, Borel ''σ''-algebra on R''n''. Let ''λ''''n'' : ''B''0(R''n'') → [0, +∞] denote the usual ''n''-dimensional Lebesgue measure. Then the standard Gaussian measure ''γ''''n'' : ''B''0(R''n'') → [0, 1] is defined by :\gamma^ (A) = \frac \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]