Dependent Dirichlet Process
   HOME





Dependent Dirichlet Process
In the mathematical theory of probability, the dependent Dirichlet process (DDP) provides a non-parametric prior over evolving mixture models. A construction of the DDP built on a Poisson point process. The concept is named after Peter Gustav Lejeune Dirichlet. In many applications we want to model a collection of distributions such as the one used to represent temporal and spatial stochastic processes. The Dirichlet process assumes that observations are exchangeable and therefore the data points have no inherent ordering that influences their labeling. This assumption is invalid for modelling temporal and spatial processes in which the order of data points plays a critical role in creating meaningful clusters may refer to: Science and technology Astronomy * Cluster (spacecraft), constellation of four European Space Agency spacecraft * Cluster II (spacecraft), a European Space Agency mission to study the magnetosphere * Asteroid cluster, a small .... Dependent Dirichlet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Prior Probability Distribution
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data. Historically, the choice of priors was often constrained to a conjugate family of a given likelihood function, so that it would result in a tractable posterior of the same family. The widespread availability of Markov chain Monte Carlo methods, however, has made this less of a concern. There are many ways to constru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE