HOME
*





Density Altitude
The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level. The density altitude can also be considered to be the pressure altitude adjusted for a non-standard temperature. Both an increase in the temperature and a decrease in the atmospheric pressure, and, to a much lesser degree, an increase in the humidity, will cause an increase in the density altitude. In hot and humid conditions, the density altitude at a particular location may be significantly higher than the true altitude. In aviation, the density altitude is used to assess an aircraft's aerodynamic performance under certain weather conditions. The lift generated by the aircraft's airfoils, and the relation between its indicated airspeed (IAS) and its true airspeed (TAS), are also subject to air-density c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Density Of Air
The density of air or atmospheric density, denoted '' ρ'', is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variation in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C (68 °F), air has a density of approximately , according to the International Standard Atmosphere (ISA). At 101.325kPa (abs) and , air has a density of approximately , which is about that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is . Air density is a property used in many branches of science, engineering, and industry, including aeronautics;Olson, Wayne M. (2000) AFFTC-TIH-99-01, Aircraft Performance FlightICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)), Doc 7488-CD, Third Edition, 1993, .Grigorie, T.L., Dinca, L., Corcau J-I. and Grigorie, O. (2010) Aircrafts' Altitude Measurement Using Pressure Information:Ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Density Altitude
The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level. The density altitude can also be considered to be the pressure altitude adjusted for a non-standard temperature. Both an increase in the temperature and a decrease in the atmospheric pressure, and, to a much lesser degree, an increase in the humidity, will cause an increase in the density altitude. In hot and humid conditions, the density altitude at a particular location may be significantly higher than the true altitude. In aviation, the density altitude is used to assess an aircraft's aerodynamic performance under certain weather conditions. The lift generated by the aircraft's airfoils, and the relation between its indicated airspeed (IAS) and its true airspeed (TAS), are also subject to air-density c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Runway
According to the International Civil Aviation Organization (ICAO), a runway is a "defined rectangular area on a land aerodrome prepared for the landing and takeoff of aircraft". Runways may be a man-made surface (often asphalt, concrete, or a mixture of both) or a natural surface ( grass, dirt, gravel, ice, sand or salt). Runways, as well as taxiways and ramps, are sometimes referred to as "tarmac", though very few runways are built using tarmac. Takeoff and landing areas defined on the surface of water for seaplanes are generally referred to as waterways. Runway lengths are now commonly given in meters worldwide, except in North America where feet are commonly used. History In 1916, in a World War I war effort context, the first concrete-paved runway was built in Clermont-Ferrand in France, allowing local company Michelin to manufacture Bréguet Aviation military aircraft. In January 1919, aviation pioneer Orville Wright underlined the need for "distinctly m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Acceleration
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. At different points on Earth's surface, the free fall acceleration ranges from , depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as . Locations of significant variation from this value are known as gravity anomalies. This does not take into account other effects, such as buoyancy or drag. Relation to the Universal Law Newton's law of universal gravitation stat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gas Constant
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, i.e. the pressure–volume product, rather than energy per temperature increment per ''particle''. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. The gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale and the scale used for amount of substance. Thus, the value of the gas constant ultimately derives from historical decisions and accidents in the setting of units of energy, temperature and amount of substan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lapse Rate
The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. ''Lapse rate'' arises from the word ''lapse'', in the sense of a gradual fall. In dry air, the adiabatic lapse rate is 9.8 °C/km (5.4 °F per 1,000 ft). It corresponds to the vertical component of the spatial gradient of temperature. Although this concept is most often applied to the Earth's troposphere, it can be extended to any gravitationally supported parcel of gas. Definition A formal definition from the ''Glossary of Meteorology'' is: :The decrease of an atmospheric variable with height, the variable being temperature unless otherwise specified. Typically, the lapse rate is the negative of the rate of temperature change with altitude change: :\Gamma = -\frac where \Gamma (sometimes L) is the lapse rate given in units of temperature divided by units of altitude, ''T'' is temperature, and ''z'' is altitude. Convection and adiabatic expansio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and physicist William Thomson, 1st Baron Kelvin (1824–1907). The Kelvin scale is an absolute thermodynamic temperature scale, meaning it uses absolute zero as its null (zero) point. Historically, the Kelvin scale was developed by shifting the starting point of the much-older Celsius scale down from the melting point of water to absolute zero, and its increments still closely approximate the historic definition of a degree Celsius, but since 2019 the scale has been defined by fixing the Boltzmann constant to be exactly . Hence, one kelvin is equal to a change in the thermodynamic temperature that results in a change of thermal energy by . The temperature in degree Celsius is now defined as the temperature in kelvins minus 273.15, meaning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Outside Air Temperature
In aviation terminology, the outside air temperature (OAT) or static air temperature (SAT) refers to the temperature of the air around an aircraft, but unaffected by the passage of the aircraft through it.http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/0/897d269dbf5d731b8625766400563924/$FILE/AC%20251419-2.pdf Aviation usage The outside air temperature is used in many calculations pertaining to flight planning, some of them being takeoff performance, density altitude, cruise performance and go-around performance. In most texts, the abbreviation, "OAT" is used. Units Most performance and flight planning graphs and tables use either degrees Celsius or Fahrenheit or both. The Kelvin scale, however, is used for Mach number calculations. For example, the speed of sound in dry air is := 38.945 \sqrt, where: :c is the speed of sound in knots, :K is the outside air temperature in kelvins. Sources Outside air temperature can be obtained from the aviati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inches Of Mercury
Inch of mercury (inHg and ″Hg) is a non- SI unit of measurement for pressure. It is used for barometric pressure in weather reports, refrigeration and aviation in the United States. It is the pressure exerted by a column of mercury in height at the standard acceleration of gravity. Conversion to metric units depends on the temperature of mercury, and hence its density; typical conversion factors are: In older literature, an "inch of mercury" is based on the height of a column of mercury at .Barry N. Taylor, ''Guide for the Use of the International System of Units (SI),'' 1995, NIST Special Publication 811, Appendix /ref> :1 inHg60 °F = In Imperial units: 1 inHg60 °F = 0.489 771  Pounds per square inch, psi, or 2.041 771 inHg60 °F = 1 psi. Applications Aircraft and automobiles Aircraft altimeters measure the relative pressure difference between the lower ambient pressure at altitude and a calibrated reading on the ground. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pascal (unit)
The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI), and is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is defined as one newton per square metre and is equivalent to 10 barye (Ba) in the CGS system. The unit of measurement called standard atmosphere (atm) is defined as 101,325 Pa. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar, and the kilopascal (1 kPa = 1000 Pa), which is equal to one centibar. Meteorological observations typically report atmospheric pressure in hectopascals per the recommendation of the World Meteorological Organization, thus a standard atmosphere (atm) or typical sea-level air pressure is about 1013 hPa. Reports in the United States typically use inches of mercury or millibars (hectopascals). In Canada these reports are given in kilop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Sea Level
Standard sea-level conditions (SSL), also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations. The term "standard sea level" is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations. Atmospheric properties At SSL some atmospheric properties are: * Pressure, ''P'' = 101.325 kPa ⇔ 2116.2 lbf/ ft2 ⇔ 14.696 lbf/ in2 ⇔ 29.92 inHg * Density, \rho = 1.225 kg/m3  ⇔ 0.002377  slug/ft3 * Temperature, ''T'' = 15 °C ⇔ 288.15 K ⇔ 518.67 °R * Gas constant of air, ''R''air = 287.057 J/(kg·K) ⇔ 1716.59  ft·lb/sl·°R) * Specific Weight, \gamma = 12.014 N/ m3 ⇔ 0.07647 lbf/ ft3 * Dynamic viscosity, \mu = 1.789×10−5 Pa·s  ⇔ 3.737×10−7 slug/(s·ft) * Acceleration of gravity, ''g0'' = 9.807 m/s2 ⇔ 32.174 ft/s2 See also * Sea level * Sea level rise * Standard tempera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meters
The metre ( British spelling) or meter ( American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its prefixed forms are also used relatively frequently. The metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole along a great circle, so the Earth's circumference is approximately  km. In 1799, the metre was redefined in terms of a prototype metre bar (the actual bar used was changed in 1889). In 1960, the metre was redefined in terms of a certain number of wavelengths of a certain emission line of krypton-86. The current definition was adopted in 1983 and modified slightly in 2002 to clarify that the metre is a measure of proper length. From 1983 until 2019, the metre was formally defined as the length of the path travelled by light in a vacuum in of a second. After the 2019 re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]