HOME
*





Dystroglycans
Dystroglycan is a protein that in humans is encoded by the ''DAG1'' gene. Dystroglycan is one of the dystrophin-associated glycoproteins, which is encoded by a 5.5 kb transcript in ''Homo sapiens'' on chromosome 3. There are two exons that are separated by a large intron. The spliced exons code for a protein product that is finally cleaved into two non-covalently associated subunits, lpha(N-terminal) and eta(C-terminal). Function In skeletal muscle the dystroglycan complex works as a transmembrane linkage between the extracellular matrix and the cytoskeleton. lphadystroglycan is extracellular and binds to merosin lpha2 laminin in the basement membrane, while etadystroglycan is a transmembrane protein and binds to dystrophin, which is a large rod-like cytoskeletal protein, absent in Duchenne muscular dystrophy patients. Dystrophin binds to intracellular actin cables. In this way, the dystroglycan complex, which links the extracellular matrix to the intracellular actin cable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acetylcholine
Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic. Substances that increase or decrease the overall activity of the cholinergic system are called cholinergics and anticholinergics, respectively. Acetylcholine is the neurotransmitter used at the neuromuscular junction—in other words, it is the chemical that motor neurons of the nervous system release in order to activate muscles. This property means that drugs that affect cholinergic systems can have very dangerous effects ranging from paralysis to convulsions. Acetylcholine is also a neurotransmitter in the autonomic nervous system, both as an internal transmitter for the sympathetic nervous system and as the final product released by the parasymp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Agrin
Agrin is a large proteoglycan whose best-characterised role is in the development of the neuromuscular junction during embryogenesis. Agrin is named based on its involvement in the aggregation of acetylcholine receptors during synaptogenesis. In humans, this protein is encoded by the ''AGRN'' gene. This protein has nine domains homologous to protease inhibitors. It may also have functions in other tissues and during other stages of development. It is a major proteoglycan component in the glomerular basement membrane and may play a role in the renal filtration and cell-matrix interactions. Agrin functions by activating the MuSK protein (for Muscle-Specific Kinase), which is a receptor tyrosine kinase required for the formation and maintenance of the neuromuscular junction. Agrin is required to activate MuSK, which is similarly also required for neuromuscular junction formation. Discovery Agrin was first identified by the U.J. McMahan laboratory, Stanford University. Mechani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Actin-binding Protein
Actin-binding proteins (also known as ABPs) are proteins that bind to actin. This may mean ability to bind actin monomers, or polymers, or both. Many actin-binding proteins, including α-actinin, β-spectrin, dystrophin, utrophin and fimbrin, do this through the actin-binding calponin homology domain. This is a list of actin-binding proteins in alphabetical order. 0–9 * 25kDa * 25kDa ABP from aorta p185neu * 30akDA 110 kD dimer ABP * 30bkDa 110 kD (Drebrin) * 34kDA * 45kDa *p53 * p58gag * p116rip A * a-actinin * Abl * AbLIM Actin-Interacting MAPKKK * ABP120 * ABP140 * Abp1p * ABP280 (Filamin) * ABP50 (EF-1a) * Acan 125 (Carmil) *ActA *Actibind *Actin * Actinfilin * Actinogelin * Actin-regulating kinases * Actin-Related Proteins * Actobindin * Actolinkin * Actopaxin * Actophorin * Acumentin (= L-plastin) * Adducin * ADF/Cofilin * Adseverin (scinderin) * Afadin * AFAP-110 * Affixin * Aginactin * AIP1 *Aldolase *Angiogenin *Anillin *Annexins * Aplyronine * Archvillin * Argi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SHC1
SHC-transforming protein 1 is a protein that in humans is encoded by the ''SHC1'' gene. SHC has been found to be important in the regulation of apoptosis and drug resistance in mammalian cells. SCOP classifies the 3D structure as belonging to the SH2 domain The SH2 (Src Homology 2) domain is a structurally conserved protein domain contained within the Src oncoprotein and in many other intracellular signal-transducing proteins. SH2 domains allow proteins containing those domains to dock to phosphory ... family. Gene and expression The gene SHC1 is located on chromosome 1 and encodes 3 main protein isoforms: p66SHC, p52SHC and p46SHC. These proteins differ in activity and subcellular locations, p66 is the longest and while the p52 and p46 link activated receptor tyrosine kinase to the RAS pathway. The protein SHC1 also acts as a scaffold protein which is used in cell surface receptors. The three proteins that SHC1 codes for have distinctly different molecular weights. All th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Caveolin 3
Caveolin-3 is a protein that in humans is encoded by the ''CAV3'' gene. Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites and contain two potential translation initiation sites. Function This gene encodes a caveolin family member, which functions as a component of the caveolae plasma membranes found in most cell types. Caveolin proteins are proposed to be scaffolding proteins for organizing and concentrating certain caveolin-interacting molecules. Clinical significance Mutations identified in this gene lead to interference with protein oligomerization or intra-cellular routing, disrupting caveolae formation and resulting in Limb-Girdle muscular dystrophy type-1C (LGMD-1C), HyperCKemia, distal myopathy or rippling muscle disease (RMD). Other mutations in Caveolin causes Long QT Syndrome or familial hypertrophic cardiomyopathy, although the role of Cav3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NCK1
Cytoplasmic protein NCK1 is a protein that in humans is encoded by the ''NCK1'' gene. Gene The Nck (non-catalytic region of tyrosine kinase adaptor protein 1) belongs to the adaptor family of proteins. The nck gene was initially isolated from a human melanoma cDNA library using a monoclonal antibody produced against the human melanoma-associated antigen. The Nck family has two known members in human cells (Nck-1/Nckalpha and NcK2/NcKbeta), two in mouse cells (mNckalpha and mNckbeta/Grb4) and one in drosophila (Dock means dreadlocks-ortholog). The two murine gene products exhibit 68% amino acid identity to one another, with most of the sequence variation being located to the linker regions between the SH3 and SH2 domains, and are 96% identical to their human counterparts. While human nck-1 gene has been localised to the 3q21 locus of chromosome 3, the nck-2 gene can be found on chromosome 2 at the 2q12 locus. Function The protein encoded by this gene is one of the signaling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Src (gene)
Proto-oncogene tyrosine-protein kinase Src, also known as proto-oncogene c-Src, or simply c-Src (cellular Src; pronounced "sarc", as it is short for sarcoma), is a non-receptor tyrosine kinase protein that in humans is encoded by the ''SRC'' gene. It belongs to a family of Src family kinases and is similar to the v-Src (viral Src) gene of Rous sarcoma virus. It includes an SH2 domain, an SH3 domain and a tyrosine kinase domain. Two transcript variants encoding the same protein have been found for this gene. c-Src phosphorylates specific tyrosine residues in other tyrosine kinases. It plays a role in the regulation of embryonic development and cell growth. An elevated level of activity of c-Src is suggested to be linked to cancer progression by promoting other signals. Mutations in c-Src could be involved in the malignant progression of colon cancer. c-Src should not be confused with CSK (C-terminal Src kinase), an enzyme that phosphorylates c-Src at its C-terminus and provides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C-src Tyrosine Kinase
Tyrosine-protein kinase CSK also known as C-terminal Src kinase is an enzyme that, in humans, is encoded by the CSK gene. This enzyme phosphorylates tyrosine residues located in the C-terminal end of Src-family kinases (SFKs) including SRC, HCK, FYN, LCK, LYN and YES1. Function This Non-receptor tyrosine-protein kinase plays an important role in the regulation of cell growth, differentiation, migration and immune response. CSK acts by suppressing the activity of the Src family of protein kinases by phosphorylation of Src family members at a conserved C-terminal tail site in Src. Upon phosphorylation by other kinases, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is then recruited to the plasma membrane via binding to transmembrane proteins or adapter proteins located near the plasma membrane and ultimately suppresses signaling through various surface ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ras Subfamily
Ras, from "Rat sarcoma virus", is a family of related proteins that are expressed in all animal cell lineages and organs. All Ras protein family members belong to a class of protein called small GTPase, and are involved in transmitting signals within cells (cellular signal transduction). Ras is the prototypical member of the Ras superfamily of proteins, which are all related in three-dimensional structure and regulate diverse cell behaviours. When Ras is 'switched on' by incoming signals, it subsequently switches on other proteins, which ultimately turn on genes involved in cell growth, differentiation, and survival. Mutations in Ras genes can lead to the production of permanently activated Ras proteins, which can cause unintended and overactive signaling inside the cell, even in the absence of incoming signals. Because these signals result in cell growth and division, overactive Ras signaling can ultimately lead to cancer. The three Ras genes in humans (''HRAS'', ''KRAS'', a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]