Dunnett's Test
   HOME
*





Dunnett's Test
In statistics, Dunnett's test is a multiple comparison procedure developed by Canadian statistician Charles Dunnett to compare each of a number of treatments with a single control. Multiple comparisons to a control are also referred to as many-to-one comparisons. History Dunnett's test was developed in 1955; an updated table of critical values was published in 1964.Dunnett C. W. (1964.) "New tables for multiple comparisons with a control", ''Biometrics'', 20:482491. Multiple Comparisons Problem The multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The major issue in any discussion of multiple-comparison procedures is the question of the probability of Type I errors. Most differences among alternative techniques result from different approaches to the question of how to control these errors. The problem is in part technical; b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple Comparisons
In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made. History The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Israel. Definition Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charles Dunnett
Charles William Dunnett (24 August 1921 – May 18, 2007) was a Canadian statistician. He was the Statistical Society of Canada 1986 Gold Medalist and Professor Emeritus of the Departments of Mathematics, Statistics, Clinical Epidemiology, and Biostatistics of McMaster University. Two of his papers are listed among the top 25 most-cited papers in statistics (numbers 14 and 21 in the list). In 1965 he was elected as a Fellow of the American Statistical Association. Dunnett died on 18 May 2007 from lymphoma. See also *Dunnett's test In statistics, Dunnett's test is a multiple comparison procedure developed by Canadian statistician Charles Dunnett to compare each of a number of treatments with a single control. Multiple comparisons to a control are also referred to as many-to-o ... References External linksA Conversation with Charles Dunnett at the SSC 1921 births 2007 deaths Canadian mathematicians Canadian statisticians Deaths from lymphoma Fellows of the American St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Family-wise Error Rate
In statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. Familywise and Experimentwise Error Rates Tukey (1953) developed the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Based on Tukey (1953), Ryan (1959) proposed the related concept of an ''experimentwise error rate'', which is the probability of making a Type I error in a given experiment. Hence, an experimentwise error rate is a familywise error rate for all of the tests that are conducted within an experiment. As Ryan (1959, Footnote 3) explained, an experiment may contain two or more families of multiple comparisons, each of which relates to a particular statistical inference and each of which has its own separate familywise error rate. Hence, familywise error rates are usually based on theoretically informative collections of multiple c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Tukey
John Wilder Tukey (; June 16, 1915 – July 26, 2000) was an American mathematician and statistician, best known for the development of the fast Fourier Transform (FFT) algorithm and box plot. The Tukey range test, the Tukey lambda distribution, the Tukey test of additivity, and the Teichmüller–Tukey lemma all bear his name. He is also credited with coining the term 'bit' and the first published use of the word 'software'. Biography Tukey was born in New Bedford, Massachusetts in 1915, to a Latin teacher father and a private tutor. He was mainly taught by his mother and attended regular classes only for certain subjects like French. Tukey obtained a BA in 1936 and MSc in 1937 in chemistry, from Brown University, before moving to Princeton University, where in 1939 he received a PhD in mathematics after completing a doctoral dissertation titled "On denumerability in topology". During World War II, Tukey worked at the Fire Control Research Office and collaborated wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Henry Scheffé
Henry Scheffé (April 11, 1907 – July 5, 1977) was an American statistician. He is known for the Lehmann–Scheffé theorem and Scheffé's method. Education and career Scheffé was born in New York City on April 11, 1907, the child of German immigrants. The family moved to Islip, New York, where Scheffé went to high school. He graduated in 1924, took night classes at Cooper Union, and a year later entered the Polytechnic Institute of Brooklyn. He transferred to the University of Wisconsin in 1928, and earned a bachelor's degree in mathematics there in 1931. Staying at Wisconsin, he married his wife Miriam in 1934 and finished his PhD in 1935, on the subject of differential equations, under the supervision of Rudolf Ernest Langer. After teaching mathematics at Wisconsin, Oregon State University, and Reed College, Scheffé moved to Princeton University in 1941. At Princeton, he began working in statistics instead of in pure mathematics, and assisted the U.S. war effort as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Student's T-statistic
In statistics, the ''t''-statistic is the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error. It is used in hypothesis testing via Student's ''t''-test. The ''t''-statistic is used in a ''t''-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that ''t''-statistic is used when the sample size is small or the population standard deviation is unknown. For example, the ''t''-statistic is used in estimating the population mean from a sampling distribution of sample means if the population standard deviation is unknown. It is also used along with p-value when running hypothesis tests where the p-value tells us what the odds are of the results to have happened. Definition and features Let \hat\beta be an estimator of parameter ''β'' in some statistical model. Then a ''t''-statistic for this parameter is any quantity of the form : t_ = \frac, whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Saint Anselm College
Saint Anselm College is a private Benedictine liberal arts college in Goffstown, New Hampshire. Founded in 1889, it is the third-oldest Catholic college in New England. Named for Saint Anselm of Canterbury (Archbishop of Canterbury from 1093 to 1109), the college continues to have a fully functioning and independent Benedictine abbey attached to it, Saint Anselm Abbey. As of 2017, its enrollment was approximately 2,000. According to the college, the student body is selected not only for their academic abilities but also for their personal character. The college's academic curriculum requires several philosophy and theology courses as well as the "Conversatio" program. Since the 1950s, the college has played a role in the "first in the nation" New Hampshire primary, and has served as the national stage for many future presidents, candidates, and supporters. Presidents John F. Kennedy and Richard Nixon each delivered important policy speeches there. The college has also been ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Confidence Interval
In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of corresponding CIs that contain the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value. Factors affecting the width of the CI include the sample size, the variability in the sample, and the confidence level. All else being the same, a larger sample produces a narrower confidence interval, greater variability in the sample produces a wider confidence interval, and a higher confidence level produces a wider confidence interval. Definition Let be a random sample from a probability distribution with statistical parameter , which is a quantity to be estimate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Control Group
In the design of experiments, hypotheses are applied to experimental units in a treatment group. In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. There may be more than one treatment group, more than one control group, or both. A placebo control group can be used to support a double-blind study, in which some subjects are given an ineffective treatment (in medical studies typically a sugar pill) to minimize differences in the experiences of subjects in the different groups; this is done in a way that ensures no participant in the experiment (subject or experimenter) knows to which group each subject belongs. In such cases, a third, non-treatment control group can be used to measure the placebo effect directly, as the difference between the responses of placebo subjects and untreated subjects, perhaps paired by age group or other factors (such as being twins). For the conclusions drawn from the results of an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Confidence Interval
In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of corresponding CIs that contain the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value. Factors affecting the width of the CI include the sample size, the variability in the sample, and the confidence level. All else being the same, a larger sample produces a narrower confidence interval, greater variability in the sample produces a wider confidence interval, and a higher confidence level produces a wider confidence interval. Definition Let be a random sample from a probability distribution with statistical parameter , which is a quantity to be estimate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]