HOME
*





Dowker Space
In the mathematical field of general topology, a Dowker space is a topological space that is T4 but not countably paracompact. They are named after Clifford Hugh Dowker. The non-trivial task of providing an example of a Dowker space (and therefore also proving their existence as mathematical objects) helped mathematicians better understand the nature and variety of topological spaces. Equivalences Dowker showed, in 1951, the following: If ''X'' is a normal T1 space (that is, a T4 space), then the following are equivalent: * ''X'' is a Dowker space * The product of ''X'' with the unit interval is not normal. * ''X'' is not countably metacompact. Dowker conjectured that there were no Dowker spaces, and the conjecture was not resolved until Mary Ellen Rudin constructed one in 1971. Rudin's counterexample is a very large space (of cardinality \aleph_\omega^). Zoltán Balogh gave the first ZFC construction of a small (cardinality continuum) example, which was more well-behaved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamenta Mathematicae
''Fundamenta Mathematicae'' is a peer-reviewed scientific journal of mathematics with a special focus on the foundations of mathematics, concentrating on set theory, mathematical logic, topology and its interactions with algebra, and dynamical systems. Originally it only covered topology, set theory, and foundations of mathematics: it was the first specialized journal in the field of mathematics..... It is published by the Mathematics Institute of the Polish Academy of Sciences. History The journal was conceived by Zygmunt Janiszewski as a means to foster mathematical research in Poland.According to and to the introduction to the 100th volume of the journal (1978, pp=1–2). These two sources cite an article written by Janiszewski himself in 1918 and titled "''On the needs of Mathematics in Poland''". Janiszewski required that, in order to achieve its goal, the journal should not force Polish mathematicians to submit articles written exclusively in Polish, and should be devoted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Saharon Shelah
Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is the son of the Israeli poet and political activist Yonatan Ratosh. He received his PhD for his work on stable theories in 1969 from the Hebrew University. Shelah is married to Yael, and has three children. His brother, magistrate judge Hamman Shelah was murdered along with his wife and daughter by an Egyptian soldier in the Ras Burqa massacre in 1985. Shelah planned to be a scientist while at primary school, but initially was attracted to physics and biology, not mathematics. Later he found mathematical beauty in studying geometry: He said, "But when I reached the ninth grade I began studying geometry and my eyes opened to that beauty—a system of demonstration and theorems based on a very small number of axioms which impr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PCF Theory
PCF theory is the name of a mathematical theory, introduced by Saharon , that deals with the cofinality of the ultraproducts of ordered sets. It gives strong upper bounds on the cardinalities of power sets of singular cardinals, and has many more applications as well. The abbreviation "PCF" stands for "possible cofinalities". Main definitions If ''A'' is an infinite set of regular cardinals, ''D'' is an ultrafilter on ''A'', then we let \operatorname(\prod A/D) denote the cofinality of the ordered set of functions \prod A where the ordering is defined as follows: f if \\in D. pcf(''A'') is the set of cofinalities that occur if we consider all ultrafilters on ''A'', that is,
\operatorname(A)=\.


Main results

Obviously, pcf(''A'') consists of regular cardinals. Considering ultrafilters concentrated on elements of ''A'', we get that A\subseteq \operatorname(A). Shelah proved, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Well-behaved
In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved. In analysis A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable. Such examples were deemed pathological when they were first discovered: To quote Henri Poincaré: Since Poincaré, nowhere differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

Cardinality Of The Continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathbb R, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a''  \mathfrak c . Alternative explanation for 𝔠 = 2ℵ0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zoltán Tibor Balogh
Zoltán "Zoli" Tibor Balogh (December 7, 1953 – June 19, 2002) was a Hungarian-born mathematician, specializing in set-theoretic topology. His father, Tibor Balogh, was also a mathematician. His best-known work concerned solutions to problems involving normality of products, most notably the first ZFC construction of a small (cardinality continuum) Dowker space. He also solved Nagami's problem (normal + screenable does not imply paracompact), and the second and third Morita conjectures about normality in products.Z. Balogh, Non-shrinking open covers and K. Morita's duality conjectures, '' Topology Appl.'', 115 (2001) 333-341 References External linksMemorial with photographZoli -- Topology Proceedings 27 (2003)
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mary Ellen Rudin
Mary Ellen Rudin (December 7, 1924 – March 18, 2013) was an American mathematician known for her work in set-theoretic topology. In 2013, Elsevier established the Mary Ellen Rudin Young Researcher Award, which is awarded annually to a young researcher, mainly in fields adjacent to general topology. Early life and education Mary Ellen (Estill) Rudin was born in Hillsboro, Texas to Joe Jefferson Estill and Irene (Shook) Estill. Her mother Irene was an English teacher before marriage, and her father Joe was a civil engineer. The family moved with her father's work, but spent a great deal of Mary Ellen's childhood around Leakey, Texas.Albers, D.J. and Reid, C. (1988) "An Interview with Mary Ellen Rudin". ''The College of Mathematics Journal'' 19(2) pp.114-137 She had one sibling, a younger brother. Both of Rudin's maternal grandmothers had attended Mary Sharp College near their hometown of Winchester, Tennessee. Rudin remarks on this legacy and how much her family valued educat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Metacompact Space
In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover. A space is countably metacompact if every countable open cover has a point-finite open refinement. Properties The following can be said about metacompactness in relation to other properties of topological spaces: * Every paracompact space is metacompact. This implies that every compact space is metacompact, and every metric space is metacompact. The converse does not hold: a counter-example is the Dieudonné plank. * Every metacompact space is orthocompact. * Every metacompact normal space is a shrinking space * The product of a compact space and a metacompact space is metacompact. This follows from the tube lemma. * An easy exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]