HOME
*



picture info

Dodecagonal Prism
In geometry, the dodecagonal prism is the tenth in an infinite set of prisms, formed by square sides and two regular dodecagon caps. If faces are all regular, it is a uniform polyhedron. Use It is used in the construction of two prismatic uniform honeycomb In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of face ...s: The new British one pound (£1) coin, which entered circulation in March 2017, is shaped like a dodecagonal prism. Related polyhedra References External links * Prismatoid polyhedra Zonohedra {{Polyhedron-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prism (geometry)
In geometry, a prism is a polyhedron comprising an polygon Base (geometry), base, a second base which is a Translation (geometry), translated copy (rigidly moved without rotation) of the first, and other Face (geometry), faces, necessarily all parallelograms, joining corresponding sides of the two bases. All Cross section (geometry), cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids. Like many basic geometric terms, the word ''prism'' () was first used in Euclid's Elements. Euclid defined the term in Book XI as “a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms”. However, this definition has been criticized for not being specific enough in relation to the nature of the bases, which caused confusion among later geometry writers. Oblique prism An oblique prism is a pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecagon
In geometry, a dodecagon or 12-gon is any twelve-sided polygon. Regular dodecagon A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12. A regular dodecagon is represented by the Schläfli symbol and can be constructed as a truncated hexagon, t, or a twice-truncated triangle, tt. The internal angle at each vertex of a regular dodecagon is 150°. Area The area of a regular dodecagon of side length ''a'' is given by: :\begin A & = 3 \cot\left(\frac \right) a^2 = 3 \left(2+\sqrt \right) a^2 \\ & \simeq 11.19615242\,a^2 \end And in terms of the apothem ''r'' (see also inscribed figure), the area is: :\begin A & = 12 \tan\left(\frac\right) r^2 = 12 \left(2-\sqrt \right) r^2 \\ & \simeq 3.2153903\,r^2 \end In terms of the circumradius ''R'', the area is: :A = 6 \sin\left(\frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Polyhedron
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also face- and edge-transitive), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular (if neither edge- nor face-transitive). The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra. There are two infinite classes of uniform polyhedra, together with 75 other polyhedra: *Infinite classes: ** prisms, **antiprisms. * Convex exceptional: ** 5 Platonic solids: regular convex polyhedra, ** 13 Archimedean solids: 2 quasiregular and 11 semiregular convex polyhedra. * Star (nonconvex) exceptional: ** 4 Kepler–Poinsot polyhedra: regular nonconvex polyhedra, ** 53 uniform star polyhedra: 14 quasiregular and 39 semiregular. Hence 5 + 13 + 4 + 53 = 75. There are also many degen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Honeycomb
In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as -honeycomb for an -dimensional honeycomb. An -dimensional uniform honeycomb can be constructed on the surface of -spheres, in -dimensional Euclidean space, and -dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation. Nearly all uniform tessellations can be generated by a Wythoff construction, and represented by a Coxeter–Dynkin diagram. The terminology for the convex uniform polytopes used in uniform polyhedron, uniform 4-polytope, uniform 5-polytope, uniform 6-polytope, uniform tiling, and convex uniform honeycomb articles were coined by Norman Johnson. Wythoffian tessellations can be defined by a vertex figure. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Omnitruncated Triangular-hexagonal Prismatic Honeycomb
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms. It is constructed from a triangular tiling extruded into prisms. It is one of 28 convex uniform honeycombs. It consists of 1 + 6 + 1 = 8 edges meeting at a vertex, There are 6 triangular prism cells meeting at an edge and faces are shared between 2 cells. Related honeycombs Hexagonal prismatic honeycomb The hexagonal prismatic honeycomb or hexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of hexagonal prisms. It is constructed from a hexagonal tiling extruded into prisms. It is one of 28 convex uniform honeycombs. This honeycomb can be alternated into the gyrated tetrahedral-octahedral honeycomb, with pairs of tetrahedra existing in the alternated gaps (instead of a triangular bipyramid). There are 1 + 3 + 1 = 5 edges meeting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Hexagonal Prismatic Honeycomb
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms. It is constructed from a triangular tiling extruded into prisms. It is one of 28 convex uniform honeycombs. It consists of 1 + 6 + 1 = 8 edges meeting at a vertex, There are 6 triangular prism cells meeting at an edge and faces are shared between 2 cells. Related honeycombs Hexagonal prismatic honeycomb The hexagonal prismatic honeycomb or hexagonal prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of hexagonal prisms. It is constructed from a hexagonal tiling extruded into prisms. It is one of 28 convex uniform honeycombs. This honeycomb can be alternation (geometry), alternated into the gyrated tetrahedral-octahedral honeycomb, with pairs of tetrahedra existing in the alternated gaps (instead of a triangular bipyramid). There are 1 + 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

One Pound (British Coin)
The British one pound (£1) coin is a denomination of sterling coinage. Its obverse bears the Latin engraving ELIZABETH II D G REG () F D () meaning, 'Elizabeth II, by the grace of God, Queen, Defender of the Faith'. Proclamation of 28 May 1953 made in accordance with the Royal Titles Act 1953. It has featured the profile of Queen Elizabeth II since the original coin's introduction on 21 April 1983. Four different portraits of the Queen have been used, with the latest design by Jody Clark being introduced in 2015. The design on the reverse side of the current, 12-sided coin features four emblems to represent each of the nations of the United Kingdom — the English rose, the leek for Wales, the Scottish thistle, and the shamrock for Northern Ireland, also two or three oak leaves — emerging from a single 5-branched stem within a crown. In May 2022 the Royal Mint announced that the Kenyan-born artist Michael Armitage is designing a new £1 coin which will be issued in 2023 an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Circulation (currency)
In monetary economics, the currency in circulation in a country is the value of currency or cash (banknotes and coins) that has ever been issued by the country’s monetary authority less the amount that has been removed. More broadly, money in circulation is the total money supply of a country, which can be defined in various ways, but always includes currency and also some types of bank deposits, such as deposits at call. The published amount of currency in circulation tends to be overstated by an unknown amount because it does not take into account money that has been destroyed, or held by individuals as a form of security (the proverbial “money under the mattress”), or by coin collectors, domestic or foreign, or which is held in reserve within the banking system, including currency held by foreign central banks as a foreign exchange reserve asset. Domestic demand for currency The currency in circulation in a country is based on the need or demand for cash in the community ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prismatoid Polyhedra
In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes. Its lateral faces can be trapezoids or triangles. If both planes have the same number of vertices, and the lateral faces are either parallelograms or trapezoids, it is called a prismoid. Volume If the areas of the two parallel faces are and , the cross-sectional area of the intersection of the prismatoid with a plane midway between the two parallel faces is , and the height (the distance between the two parallel faces) is , then the volume of the prismatoid is given by V = \fracB. E. Meserve, R. E. Pingry: ''Some Notes on the Prismoidal Formula''. The Mathematics Teacher, Vol. 45, No. 4 (April 1952), pp. 257-263 (This formula follows immediately by integrating the area parallel to the two planes of vertices by Simpson's rule, since that rule is exact for integration of polynomials of degree up to 3, and in this case the area is at most a quadratic function in the height.) Prismatoid famil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]