Discrepancy Function
   HOME
*





Discrepancy Function
In structural equation modeling, a discrepancy function is a mathematical function which describes how closely a structural model conforms to observed data; it is a measure of goodness of fit. Larger values of the discrepancy function indicate a poor fit of the model to data. In general, the parameter estimates for a given model are chosen so as to make the discrepancy function for that model as small as possible. Analogous concepts in statistics are known as goodness of fit or statistical distance, and include deviance and divergence. Examples There are several basic types of discrepancy functions, including maximum likelihood (ML), generalized least squares (GLS), and ordinary least squares (OLS), which are considered the "classical" discrepancy functions. Discrepancy functions all meet the following basic criteria: *They are non-negative, i.e., always greater than or equal to zero. *They are zero only if the fit is perfect, i.e., if the model and parameter estimates perfectly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Structural Equation Modeling
Structural equation modeling (SEM) is a label for a diverse set of methods used by scientists in both experimental and observational research across the sciences, business, and other fields. It is used most in the social and behavioral sciences. A definition of SEM is difficult without reference to highly technical language, but a good starting place is the name itself. SEM involves the construction of a ''model'', to represent how various aspects of an observable or theoretical phenomenon are thought to be causally structurally related to one another. The ''structural'' aspect of the model implies theoretical associations between variables that represent the phenomenon under investigation. The postulated causal structuring is often depicted with arrows representing causal connections between variables (as in Figures 1 and 2) but these causal connections can be equivalently represented as equations. The causal structures imply that specific patterns of connections should appe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goodness Of Fit
The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test). In the analysis of variance, one of the components into which the variance is partitioned may be a lack-of-fit sum of squares. Fit of distributions In assessing whether a given distribution is suited to a data-set, the following tests and their underlying measures of fit can be used: * Bayesian information criterion *Kolmogorov–Smirnov test *Cramér–von Mises criterion *Anderson–Darling test * Shapiro–Wilk test *Chi-squared test *Akaike informat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Distance
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points. A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence,Dodge, Y. (2003)—entry for distance and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values. Statistical distance measures are not typically m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deviance (statistics)
In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing. It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. It plays an important role in exponential dispersion models and generalized linear models. Definition The unit deviance d(y,\mu) is a bivariate function that satisfies the following conditions: * d(y,y) = 0 * d(y,\mu) > 0 \quad\forall y \neq \mu The total deviance D(\mathbf,\hat) of a model with predictions \hat of the observation \mathbf is the sum of its unit deviances: D(\mathbf,\hat) = \sum_i d(y_i, \hat_i). The (total) deviance for a model ''M''0 with estimates \hat = E \hat_0/math>, based on a dataset ''y'', may be constructed by its likelihood as:McCullagh and Nelder (1989): page 17 D(y,\hat) = 2 \left(\log \left (y\mid\hat \theta_s)\right- \log \left p(y\mid\hat \theta_0)\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Divergence (statistics)
In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED. The other most important divergence is relative entropy (Kullback–Leibler divergence, KL divergence), which is central to information theory. There are numerous other specific divergences and classes of divergences, notably ''f''-divergences and Bregman divergences (see ). Definition Given a differentiable manifold M of dimension n, a divergence on M is a C^2-function D: M\times M\to [0, \infty) satisfying: # D(p, q) \geq 0 for all p, q \in M (non-negativity), # D(p, q) = 0 if and only if p=q (positivity), # At every point p\in M, D(p, p+dp) is a positive-definite quadratic form for infinitesimal displacements dp from p. In applications to statistics, the manifol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Likelihood
In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, maximizing a likelihood function so that, under the assumed statistical model, the Realization (probability), observed data is most probable. The point estimate, point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is Differentiable function, differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Least Squares
In statistics, generalized least squares (GLS) is a technique for estimating the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in a regression model. In these cases, ordinary least squares and weighted least squares can be statistically inefficient, or even give misleading inferences. GLS was first described by Alexander Aitken in 1936. Method outline In standard linear regression models we observe data \_ on ''n'' statistical units. The response values are placed in a vector \mathbf = \left( y_, \dots, y_ \right)^, and the predictor values are placed in the design matrix \mathbf = \left( \mathbf_^, \dots, \mathbf_^ \right)^, where \mathbf_ = \left( 1, x_, \dots, x_ \right) is a vector of the ''k'' predictor variables (including a constant) for the ''i''th unit. The model forces the conditional mean of \mathbf given \mathbf to be a linear function of \mathbf, and assumes the conditional variance of the err ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinary Least Squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being observed) in the input dataset and the output of the (linear) function of the independent variable. Geometrically, this is seen as the sum of the squared distances, parallel to the axis of the dependent variable, between each data point in the set and the corresponding point on the regression surface—the smaller the differences, the better the model fits the data. The resulting estimator can be expressed by a simple formula, especially in the case of a simple linear regression, in which there is a single regressor on the right side of the regression equation. The OLS estimator is consiste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deviance (statistics)
In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing. It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. It plays an important role in exponential dispersion models and generalized linear models. Definition The unit deviance d(y,\mu) is a bivariate function that satisfies the following conditions: * d(y,y) = 0 * d(y,\mu) > 0 \quad\forall y \neq \mu The total deviance D(\mathbf,\hat) of a model with predictions \hat of the observation \mathbf is the sum of its unit deviances: D(\mathbf,\hat) = \sum_i d(y_i, \hat_i). The (total) deviance for a model ''M''0 with estimates \hat = E \hat_0/math>, based on a dataset ''y'', may be constructed by its likelihood as:McCullagh and Nelder (1989): page 17 D(y,\hat) = 2 \left(\log \left (y\mid\hat \theta_s)\right- \log \left p(y\mid\hat \theta_0)\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Constructions Of Low-discrepancy Sequences
In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of ''N'', its subsequence ''x''1, ..., ''x''''N'' has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set ''B'' is close to proportional to the measure of ''B'', as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific definitions of discrepancy differ regarding the choice of ''B'' ( hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized) and combined (usually by taking the worst value). Low-discrepancy sequences are also called quasirandom sequences, due to their common use as a replacement of uniformly distributed random numbers. The "quasi" modifier is used to denote more clearly that the values of a low-discrepancy sequence are neither random nor pseudorandom, but such sequences share some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrepancy Theory
In mathematics, discrepancy theory describes the deviation of a situation from the state one would like it to be in. It is also called the theory of irregularities of distribution. This refers to the theme of ''classical'' discrepancy theory, namely distributing points in some space such that they are evenly distributed with respect to some (mostly geometrically defined) subsets. The discrepancy (irregularity) measures how far a given distribution deviates from an ideal one. Discrepancy theory can be described as the study of inevitable irregularities of distributions, in measure-theoretic and combinatorial settings. Just as Ramsey theory elucidates the impossibility of total disorder, discrepancy theory studies the deviations from total uniformity. A significant event in the history of discrepancy theory was the 1916 paper of Weyl on the uniform distribution of sequences in the unit interval. __NOTOC__ Theorems Discrepancy theory is based on the following classic theorems: * T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Low-discrepancy Sequence
In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of ''N'', its subsequence ''x''1, ..., ''x''''N'' has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set ''B'' is close to proportional to the measure of ''B'', as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific definitions of discrepancy differ regarding the choice of ''B'' ( hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized) and combined (usually by taking the worst value). Low-discrepancy sequences are also called quasirandom sequences, due to their common use as a replacement of uniformly distributed random numbers. The "quasi" modifier is used to denote more clearly that the values of a low-discrepancy sequence are neither random nor pseudorandom, but such sequences share so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]