HOME





Direct Comparison Test
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known. For series In calculus, the comparison test for series typically consists of a pair of statements about infinite series with non-negative ( real-valued) terms: * If the infinite series \sum b_n converges and 0 \le a_n \le b_n for all sufficiently large ''n'' (that is, for all n>N for some fixed value ''N''), then the infinite series \sum a_n also converges. * If the infinite series \sum b_n diverges and 0 \le b_n \le a_n for all sufficiently large ''n'', then the infinite series \sum a_n also diverges. Note that the series having larger terms is sometimes said to ''dominate'' (or ''eventually dominate'') the series with smaller terms. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Sequence
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other. Cauchy sequences are named after Augustin-Louis Cauchy; they may occasionally be known as fundamental sequences. It is not sufficient for each term to become arbitrarily close to the term. For instance, in the sequence of square roots of natural numbers: a_n=\sqrt n, the consecutive terms become arbitrarily close to each other – their differences a_-a_n = \sqrt-\sqrt = \frac d. As a result, no matter how far one goes, the remaining terms of the sequence never get close to ; hence the sequence is not Cauchy. The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monotone Convergence Theorem
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non- increasing, or non- decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers a_1 \le a_2 \le a_3 \le ...\le K converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded. For sums of non-negative increasing sequences 0 \le a_ \le a_ \le \cdots , it says that taking the sum and the supremum can be interchanged. In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit Comparison Test
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement Suppose that we have two series \Sigma_n a_n and \Sigma_n b_n with a_n\geq 0, b_n > 0 for all n. Then if \lim_ \frac = c with 0 < c < \infty , then either both series converge or both series diverge.


Proof

Because \lim_ \frac = c we know that for every \varepsilon > 0 there is a positive integer n_0 such that for all n \geq n_0 we have that \left, \frac - c \ < \varepsilon , or equivalently : - \varepsilon < \frac - c < \varepsilon : c - \varepsilon < \frac < c + \varepsilon : (c - \varepsilon)b_n < a_n < (c + \varepsilon)b_n As c > 0 we can choose \varepsilon to be sufficiently small such that c-\vare ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integral Test For Convergence
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test. Statement of the test Consider an integer and a function defined on the unbounded interval , on which it is monotone decreasing. Then the infinite series :\sum_^\infty f(n) converges to a real number if and only if the improper integral :\int_N^\infty f(x)\,dx is finite. In particular, if the integral diverges, then the series diverges as well. Remark If the improper integral is finite, then the proof also gives the lower and upper bounds for the infinite series. Note that if the function f(x) is increasing, then the function -f(x) is decreasing and the above theorem applies. Many textbooks require the function f to be positive, but this condition is not really necessary, since when f is negative and decreasing both \sum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere pointwise convergent to a function then the sequence converges in L_1 to its pointwise limit, and in particular the integral of the limit is the limit of the integrals. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence (mathematics)
In mathematics, a series (mathematics), series is the summation, sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_1, a_2, a_3, \ldots) defines a series (mathematics), series that is denoted :S=a_1 + a_2 + a_3 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = a_1 +a_2 + \cdots + a_n = \sum_^n a_k. A series is convergent (or converges) if and only if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit of a sequence, limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if and only if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence Tests
In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series \sum_^\infty a_n. List of tests Limit of the summand If the limit of the summand is undefined or nonzero, that is \lim_a_n \ne 0, then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, test for divergence, or the divergence test. Ratio test This is also known as d'Alembert's criterion. : Consider two limits \ell=\liminf_\left, \frac\ and L=\limsup_\left, \frac\. If \ell>1, the series diverges. If L 1. The case of p = 1, k = 1 yields the harmonic series, which diverges. The case of p = 2, k = 1 is the Basel problem and the series converges to \frac. In general, for p > 1, k = 1, the series is equal to the Riemann zeta funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ratio Test
In mathematics, the ratio test is a convergence tests, test (or "criterion") for the convergent series, convergence of a series (mathematics), series :\sum_^\infty a_n, where each term is a real number, real or complex number and is nonzero when is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The test The usual form of the test makes use of the limit (mathematics), limit The ratio test states that: * if ''L'' 1 then the series divergent series, diverges; * if ''L'' = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case. It is possible to make the ratio test applicable to certain cases where the limit ''L'' fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when ''L'' = 1. More specifically, let ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Sum
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit Comparison Test
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement Suppose that we have two series \Sigma_n a_n and \Sigma_n b_n with a_n\geq 0, b_n > 0 for all n. Then if \lim_ \frac = c with 0 < c < \infty , then either both series converge or both series diverge.


Proof

Because \lim_ \frac = c we know that for every \varepsilon > 0 there is a positive integer n_0 such that for all n \geq n_0 we have that \left, \frac - c \ < \varepsilon , or equivalently : - \varepsilon < \frac - c < \varepsilon : c - \varepsilon < \frac < c + \varepsilon : (c - \varepsilon)b_n < a_n < (c + \varepsilon)b_n As c > 0 we can choose \varepsilon to be sufficiently small such that c-\vare ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]