HOME
*





Differentiation Of Measures (other)
In mathematics, differentiation of measures may refer to: * the problem of differentiation of integrals In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. ..., also known as the differentiation problem for measures; * the Radon–Nikodym derivative of one measure with respect to another. {{mathematical disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differentiation Of Integrals
In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. More formally, given a space ''X'' with a measure ''μ'' and a metric ''d'', one asks for what functions ''f'' : ''X'' → R does \lim_ \frac1 \int_ f(y) \, \mathrm \mu(y) = f(x) for all (or at least ''μ''-almost all) ''x'' ∈ ''X''? (Here, as in the rest of the article, ''B''''r''(''x'') denotes the open ball in ''X'' with ''d''-radius ''r'' and centre ''x''.) This is a natural question to ask, especially in view of the heuristic construction of the Riemann integral, in which it is almost implicit that ''f''(''x'') is a "good representative" for the values of ''f'' near ''x''. Theorems on the differentiation of integrals Lebesgue measure One result on the differentiation of integrals is the Lebes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]