HOME





Differential Algebraic Geometry
Differential algebraic geometry is an area of differential algebra that adapts concepts and methods from algebraic geometry and applies them to systems of differential equations, especially algebraic differential equation In mathematics, an algebraic differential equation is a differential equation that can be expressed by means of differential algebra. There are several such notions, according to the concept of differential algebra used. The intention is to in ...s. Another way of generalizing ideas from algebraic geometry is diffiety theory. ReferencesDifferential algebraic geometry (three parts in one pdf) part of th*, Henri Gillet (2000)Differential algebra - A Scheme Theory Approach Differential algebra and related topics: proceedings of the International Workshop, Newark Campus of Rutgers, The State University of New Jersey, 2-3 November 2000, Editors Li Guo, William F. Keigher, World Scientific, Differential algebra {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Algebra
In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, \mathbb(t), where the derivation is differentiation with respect to t. Differential algebra refers also to the area of mathematics consisting in the study of these algebraic objects and their use in the algebraic study of differential equations. Differential algebra was introduced by Joseph Ritt in 1950. Open problems The biggest open problems in the field include the Kolchin Catenary Conjecture, the Ritt Problem, and The Jacobi Bound Problem. All of these deal with the structure of differential ideals in differential rings. Differential ring A ''differential ring'' is a ring R equipped with one or more '' derivations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Differential Equation
In mathematics, an algebraic differential equation is a differential equation that can be expressed by means of differential algebra. There are several such notions, according to the concept of differential algebra used. The intention is to include equations formed by means of differential operators, in which the coefficients are rational functions of the variables (e.g. the hypergeometric equation). Algebraic differential equations are widely used in computer algebra and number theory. A simple concept is that of a polynomial vector field, in other words a vector field expressed with respect to a standard co-ordinate basis as the first partial derivatives with polynomial coefficients. This is a type of first-order algebraic differential operator. Formulations * Derivations ''D'' can be used as algebraic analogues of the formal part of differential calculus, so that algebraic differential equations make sense in commutative rings. *The theory of differential fields was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffiety
In mathematics, a diffiety () is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. The term was coined in 1984 by Alexandre Mikhailovich Vinogradov as portmanteau from differential variety. Intuitive definition In algebraic geometry the main objects of study ( varieties) model the space of solutions of a system of algebraic equations (i.e. the zero locus of a set of polynomials), together with all their "algebraic consequences". This means that, applying algebraic operations to this set (e.g. adding those polynomials to each other or multiplying them with any other polynomials) will give rise to the same zero locus. In other words, one can actually consider the zero locus of the algebraic ideal generated by the initial set of polynomials. When dealing with differential equations, apart from applying algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]