Difference Quotient
In single-variable calculus, the difference quotient is usually the name for the expression : \frac which when taken to the Limit of a function, limit as ''h'' approaches 0 gives the derivative of the Function (mathematics), function ''f''. The name of the expression stems from the fact that it is the quotient of the Difference (mathematics), difference of values of the function by the difference of the corresponding values of its argument (the latter is (''x'' + ''h'') - ''x'' = ''h'' in this case). The difference quotient is a measure of the average rate of change (mathematics), rate of change of the function over an Interval (mathematics), interval (in this case, an interval of length ''h''). The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. By a slight change in notation (and viewpoint), for an interval [''a'', ''b''], the difference quotient : \frac is called the mean (or average) value of the derivative of ''f'' over th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus. The former concerns instantaneous Rate of change (mathematics), rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus. They make use of the fundamental notions of convergence (mathematics), convergence of infinite sequences and Series (mathematics), infinite series to a well-defined limit (mathematics), limit. It is the "mathematical backbone" for dealing with problems where variables change with time or another reference variable. Infinitesimal calculus was formulated separately ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed. His book (''Mathematical Principles of Natural Philosophy''), first published in 1687, achieved the Unification of theories in physics#Unification of gravity and astronomy, first great unification in physics and established classical mechanics. Newton also made seminal contributions to optics, and Leibniz–Newton calculus controversy, shares credit with German mathematician Gottfried Wilhelm Leibniz for formulating calculus, infinitesimal calculus, though he developed calculus years before Leibniz. Newton contributed to and refined the scientific method, and his work is considered the most influential in bringing forth modern science. In the , Newton formulated the Newton's laws of motion, laws of motion and Newton's law of universal g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Newton Polynomial
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's divided differences method. Definition Given a set of ''k'' + 1 data points :(x_0, y_0),\ldots,(x_j, y_j),\ldots,(x_k, y_k) where no two ''x''''j'' are the same, the Newton interpolation polynomial is a linear combination of Newton basis polynomials :N(x) := \sum_^ a_ n_(x) with the Newton basis polynomials defined as :n_j(x) := \prod_^ (x - x_i) for ''j'' > 0 and n_0(x) \equiv 1. The coefficients are defined as :a_j := _0,\ldots,y_j/math> where _0,\ldots,y_j/math> are the divided differences defined as \begin \mathopen _k&:= y_k, && k \in \ \\ \mathopen _k,\ldots,y_&:= \frac, && k\in\,\ j\in\. \end Thus the Newton polynomi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat Theory
In category theory, a Lawvere theory (named after American mathematician William Lawvere) is a category that can be considered a categorical counterpart of the notion of an equational theory. Definition Let \aleph_0 be a skeleton of the category FinSet of finite sets and functions. Formally, a Lawvere theory consists of a small category ''L'' with (strictly associative) finite products and a strict identity-on-objects functor I:\aleph_0^\text\rightarrow L preserving finite products. A model of a Lawvere theory in a category ''C'' with finite products is a finite-product preserving functor . A morphism of models where ''M'' and ''N'' are models of ''L'' is a natural transformation of functors. Category of Lawvere theories A map between Lawvere theories (''L'', ''I'') and (''L''′, ''I''′) is a finite-product preserving functor that commutes with ''I'' and ''I''′. Such a map is commonly seen as an interpretation of (''L'', ''I'') in (''L''′, ''I'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divided Differences
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. Divided differences is a recursive division process. Given a sequence of data points (x_0, y_0), \ldots, (x_, y_), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form. It is sometimes denoted by a delta with a bar: \text \!\!\!, \,\, or \text \! \text. Definition Given ''n'' + 1 data points (x_0, y_0),\ldots,(x_, y_) where the x_k are assumed to be pairwise distinct, the forward divided differences are defined as: \begin \mathopen _k&:= y_k, && k \in \ \\ \mathopen _k,\ldots,y_&:= \frac, && k\in\,\ j\in\. \end To make the recursive process of computation clearer, the divided differences can be put in tabular form, where the columns correspond to the value of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiple Integral
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, or . Integrals of a function of two variables over a region in \mathbb^2 (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in \mathbb^3 (real-number 3D space) are called triple integrals. For repeated antidifferentiation of a single-variable function, see the Cauchy formula for repeated integration. Introduction Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the -axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where ) and the plane which contains its domain. If there are more variables, a multiple integral will yield hypervolumes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ASCII
ASCII ( ), an acronym for American Standard Code for Information Interchange, is a character encoding standard for representing a particular set of 95 (English language focused) printable character, printable and 33 control character, control characters a total of 128 code points. The set of available punctuation had significant impact on the syntax of computer languages and text markup. ASCII hugely influenced the design of character sets used by modern computers; for example, the first 128 code points of Unicode are the same as ASCII. ASCII encodes each code-point as a value from 0 to 127 storable as a seven-bit integer. Ninety-five code-points are printable, including digits ''0'' to ''9'', lowercase letters ''a'' to ''z'', uppercase letters ''A'' to ''Z'', and commonly used punctuation symbols. For example, the letter is represented as 105 (decimal). Also, ASCII specifies 33 non-printing control codes which originated with ; most of which are now obsolete. The control cha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divaricate
Divaricate means branching, or having separation or a degree of separation. The angle between branches is wide. In botany In botany, the term is often used to describe the branching pattern of plants. Plants are said to be divaricating when their growth form is such that each internode diverges widely from the previous internode, producing an often tightly interlaced shrub or small tree. Of the 72 small leaved shrubs found on the Banks Peninsula, for example, some 38 are divaricating. See also * Diastasis (pathology) In pathology, diastasis is the separation of parts of the body that are normally joined, such as the separation of certain abdominal muscles during pregnancy, or of adjacent bones without fracture. See also * Diastasis recti * Diastasis symphysis ..., a medical term for separation of parts * Laciniate References Plant morphology Medical terminology {{plant-morphology-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation. There are multiple different notations for differentiation. '' Leibniz notation'', named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas ''prime notation'' is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leib ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leibniz Notation
In calculus, Leibniz's notation, named in honor of the 17th-century German philosophy, philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols and to represent infinitely small (or infinitesimal) increments of and , respectively, just as and represent finite increments of and , respectively. Consider as a function (mathematics), function of a variable , or = . If this is the case, then the derivative (mathematics), derivative of with respect to , which later came to be viewed as the Limit (mathematics), limit :\lim_\frac = \lim_\frac, was, according to Leibniz, the quotient of an infinitesimal increment of by an infinitesimal increment of , or :\frac=f'(x), where the right hand side is Notation for differentiation#Lagrange's notation, Joseph-Louis Lagrange's notation for the derivative of at . The infinitesimal increments are called . Related to this is the integral in which the infinitesimal increments are summed (e.g. to compute lengths, area ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divided Differences
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. Divided differences is a recursive division process. Given a sequence of data points (x_0, y_0), \ldots, (x_, y_), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form. It is sometimes denoted by a delta with a bar: \text \!\!\!, \,\, or \text \! \text. Definition Given ''n'' + 1 data points (x_0, y_0),\ldots,(x_, y_) where the x_k are assumed to be pairwise distinct, the forward divided differences are defined as: \begin \mathopen _k&:= y_k, && k \in \ \\ \mathopen _k,\ldots,y_&:= \frac, && k\in\,\ j\in\. \end To make the recursive process of computation clearer, the divided differences can be put in tabular form, where the columns correspond to the value of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinitesimal
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the "infinity- th" item in a sequence. Infinitesimals do not exist in the standard real number system, but they do exist in other number systems, such as the surreal number system and the hyperreal number system, which can be thought of as the real numbers augmented with both infinitesimal and infinite quantities; the augmentations are the reciprocals of one another. Infinitesimal numbers were introduced in the development of calculus, in which the derivative was first conceived as a ratio of two infinitesimal quantities. This definition was not rigorously formalized. As calculus developed further, infinitesimals were replaced by limits, which can be calculated using the standard real numbers. In the 3rd century BC Archimedes used what ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |