HOME
*





Determinantal Variety
In algebraic geometry, determinantal varieties are spaces of matrices with a given upper bound on their ranks. Their significance comes from the fact that many examples in algebraic geometry are of this form, such as the Segre embedding of a product of two projective spaces. Definition Given ''m'' and ''n'' and ''r'' < min(''m'', ''n''), the determinantal variety ''Y'' ''r'' is the set of all ''m'' × ''n'' matrices (over a field ''k'') with rank ≤ ''r''. This is naturally an as the condition that a matrix have rank ≤ ''r'' is given by the vanishing of all of its (''r'' + 1) × (''r'' + 1) minors. Considering the generic ''m''&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birationally Equivalent
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational map from one variety (understood to be irreducible) X to another variety Y, written as a dashed arrow , is defined as a morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a rational map such that there is a rational map inverse to ''f''. A birational map induces an isomorphism from a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*

Thom-Porteous Formula
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula In mathematics, Giambelli's formula, named after Giovanni Giambelli, expresses Schubert classes in terms of special Schubert classes, or Schur functions in terms of complete symmetric functions. It states :\displaystyle \sigma_\lambda= \det(\si ... is roughly the special case when the vector bundles are sums of line bundles over projective space. pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and found the polynomial in general. proved a more general version, and generalized it further. Statement Given a morphism of vector bundles ''E'', ''F'' of ranks ''m'' and ''n'' over a smooth variety, its ''k''-th degeneracy loc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Degeneracy Loci
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula In mathematics, Giambelli's formula, named after Giovanni Giambelli, expresses Schubert classes in terms of special Schubert classes, or Schur functions in terms of complete symmetric functions. It states :\displaystyle \sigma_\lambda= \det(\si ... is roughly the special case when the vector bundles are sums of line bundles over projective space. pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and found the polynomial in general. proved a more general version, and generalized it further. Statement Given a morphism of vector bundles ''E'', ''F'' of ranks ''m'' and ''n'' over a smooth variety, its ''k''-th degeneracy loc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alain Lascoux
Alain Lascoux (17 October 1944 – 20 October 2013) was a French mathematician at the University of Marne la Vallée and Nankai University. His research was primarily in algebraic combinatorics, particularly Hecke algebras and Young tableaux. Lascoux earned his doctorate in 1977 from the University of Paris. He worked for twenty years with Marcel-Paul Schützenberger on properties of the symmetric group. They wrote many articles together and had a major impact on the development of algebraic combinatorics. They succeeded in giving a combinatorial understanding of various algebraic and geometric questions in representation theory. Thus they introduced many new objects related to both fields like Schubert polynomials and Grothendieck polynomials. They were also the first to define the crystal graph structure on Young tableaux (though not under this name). Lascoux was an invited speaker at the 1998 International Congress of Mathematicians in Berlin, Germany Germany, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syzygy (mathematics)
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution. More precisely, if e_1,\dots,e_n are elements of a (left) module over a ring (the case of a vector space over a field is a special case), a relation between e_1,\dots,e_n is a sequence (f_1,\dots, f_n) of elements of such that :f_1e_1+\dots+f_ne_n=0. The relations between e_1,\dots,e_n form a module. One is generally interested in the case where e_1,\dots,e_n is a generating set of a finitely generated module , in which case the module of the relations is often called a syzygy module of . The syzygy module depends on the choice of a generating set, but it is unique up to the direct sum with a free module. That is, if S_1 and S_2 are syzygy modules corresponding to two generating sets of the same module, then they are stably isomorphic, which means that there exist two free modules L_1 and L_2 such that S_1\oplus L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Linear Group
In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over R (the set of real numbers) is the group of invertible matrices of real numbers, and is denoted by GL''n''(R) or . More generally, the general linear group of degree ''n'' over any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jacobian Criterion
In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: *Jacobian matrix and determinant * Jacobian elliptic functions *Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by ... {{set index Mathematical terminology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Point Of An Algebraic Variety
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]