HOME
*





Depth Of A Local Ring
In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality : \mathrm(M) \leq \dim(M), where \dim M denotes the Krull dimension of the module M. Depth is used to define classes of rings and modules with good properties, for example, Cohen-Macaulay rings and modules, for which equality holds. Definition Let R be a commutative ring, I an ideal of R and M a finitely generated R-module with the property that I M is properly contained in M. (That is, some elements of M are not in I M.) Then the I-depth of M, also commonly called the grade of M, is defined as : \mathrm_I(M) = \min \. By definition, the depth of a local ring R with a ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cohen–Macaulay Ring
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways. They are named for , who proved the unmixedness theorem for polynomial rings, and for , who proved the unmixedness theorem for formal power series rings. All Cohen–Macaulay rings have the unmixedness property. For Noetherian local rings, there is the following chain of inclusions. Definition For a commutative Noetherian local ring ''R'', a finite (i.e. finitely generated) ''R''-module M\neq 0 is a ''Cohen-Macaulay module'' if \mathrm(M) = \mathrm(M) (in general we have: \mathrm(M) \leq \mathrm(M), see Auslander–Buchsbaum formula for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Embedded Component (algebraic Geometry)
Embedded or embedding (alternatively imbedded or imbedding) may refer to: Science * Embedding, in mathematics, one instance of some mathematical object contained within another instance ** Graph embedding * Embedded generation, a distributed generation of energy, also known as decentralized generation * Self-embedding, in psychology, an activity in which one pushes items into one's own flesh in order to feel pain * Embedding, in biology, a part of sample preparation for microscopes Computing * Embedded system, a special-purpose system in which the computer is completely encapsulated by the device it controls * Embedding, installing media into a text document to form a compound document ** , a HyperText Markup Language (HTML) element that inserts a non-standard object into the HTML document * Web embed, an element of a host web page that is substantially independent of the host page * Font embedding, inclusion of font files inside an electronic document * Word embedding, a te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associated Prime
In abstract algebra, an associated prime of a module ''M'' over a ring ''R'' is a type of prime ideal of ''R'' that arises as an annihilator of a (prime) submodule of ''M''. The set of associated primes is usually denoted by \operatorname_R(M), and sometimes called the ''assassin'' or ''assassinator'' of (word play between the notation and the fact that an associated prime is an ''annihilator''). In commutative algebra, associated primes are linked to the Lasker–Noether primary decomposition of ideals in commutative Noetherian rings. Specifically, if an ideal ''J'' is decomposed as a finite intersection of primary ideals, the radicals of these primary ideals are prime ideals, and this set of prime ideals coincides with \operatorname_R(R/J). Also linked with the concept of "associated primes" of the ideal are the notions of isolated primes and embedded primes. Definitions A nonzero ''R'' module ''N'' is called a prime module if the annihilator \mathrm_R(N)=\mathrm_R(N')\, f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Sequence (algebra)
In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. Definitions For a commutative ring ''R'' and an ''R''-module ''M'', an element ''r'' in ''R'' is called a non-zero-divisor on ''M'' if ''r m'' = 0 implies ''m'' = 0 for ''m'' in ''M''. An ''M''-regular sequence is a sequence :''r''1, ..., ''r''''d'' in ''R'' such that ''r''''i'' is a not a zero-divisor on ''M''/(''r''1, ..., ''r''''i''-1)''M'' for ''i'' = 1, ..., ''d''. Some authors also require that ''M''/(''r''1, ..., ''r''''d'')''M'' is not zero. Intuitively, to say that ''r''1, ..., ''r''''d'' is an ''M''-regular sequence means that these elements "cut ''M'' down" as much as possible, when we pass successively from ''M'' to ''M''/(''r''1)''M'', to ''M''/(''r''1, ''r''2)''M'', and so on. An ''R''-regular sequence is called simply a regular seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




David Rees (mathematician)
David Rees FRS (29 May 1918 – 16 August 2013) was a British professor of pure mathematics at the University of Exeter, having been head of the Mathematics / Mathematical Sciences Department at Exeter from 1958–1983. During the Second World War, Rees was active on Enigma research in Hut 6 at Bletchley Park. Early life Rees was born in Abergavenny to David Rees (1881–), a corn merchant, and his wife Florence Gertrude (Gertie) née Powell (1884–1970), the 4th out of 5 children. Despite periods of ill health and absence, he successfully completed his early education at King Henry VIII Grammar School. Education and career Rees won a scholarship to Sidney Sussex College, Cambridge, supervised by Gordon Welchman and graduating in summer 1939. On completion of his education, he initially worked on semigroup theory; the Rees factor semigroup is named after him. He also characterised completely simple and completely 0-simple semigroups, in what is nowadays known as Rees's t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a generating ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]