HOME





Delannoy Number
In mathematics, a Delannoy number D counts the paths from the southwest corner (0, 0) of a rectangular grid to the northeast corner (''m'', ''n''), using only single steps north, northeast, or east. The Delannoy numbers are named after French army officer and amateur mathematician Henri Delannoy. The Delannoy number D(m,n) also counts the global alignments of two sequences of lengths m and n, the points in an ''m''-dimensional integer lattice or cross polytope which are at most ''n'' steps from the origin, and, in cellular automata, the cells in an ''m''-dimensional von Neumann neighborhood of radius ''n''. Example The Delannoy number ''D''(3, 3) equals 63. The following figure illustrates the 63 Delannoy paths from (0, 0) to (3, 3): The subset of paths that do not rise above the SW–NE diagonal are counted by a related family of numbers, the Schröder numbers. Delannoy array The Delannoy array is an infinite matrix of the Delannoy numbers: : In this array, the numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinity
Infinity is something which is boundless, endless, or larger than any natural number. It is denoted by \infty, called the infinity symbol. From the time of the Ancient Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophical nature of infinity has been the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including Guillaume de l'Hôpital, l'Hôpital and Johann Bernoulli, Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or Magnitude (mathematics), magnitude and, if so, how this could be done. At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Array
In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ''i''th row contains only ''i'' elements. Examples Notable particular examples include these: *The Bell triangle, whose numbers count the Partition of a set, partitions of a set in which a given element is the largest singleton (mathematics), singleton * Catalan's triangle, which counts strings of matched parentheses * Euler's triangle, which counts permutations with a given number of ascents * Floyd's triangle, whose entries are all of the integers in order * Hosoya's triangle, based on the Fibonacci numbers * Lozanić's triangle, used in the mathematics of chemical compounds * Narayana triangle, counting strings of balanced parentheses with a given number of distinct nestings * Pascal's triangle, whose entries are the binomial coefficients Triangular arrays of integers in which each row is symm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Sequences
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description . The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, , even though we do not have a formula for the ''n''th perfect number. Computable and definable sequences An integer sequence is computable if there exists an algorithm that, given '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eponymous Numbers In Mathematics
An eponym is a noun after which or for which someone or something is, or is believed to be, named. Adjectives derived from the word ''eponym'' include ''eponymous'' and ''eponymic''. Eponyms are commonly used for time periods, places, innovations, biological nomenclature, astronomical objects, works of art and media, and tribal names. Various orthographic conventions are used for eponyms. Usage of the word The term ''eponym'' functions in multiple related ways, all based on an explicit relationship between two named things. ''Eponym'' may refer to a person or, less commonly, a place or thing for which someone or something is, or is believed to be, named. ''Eponym'' may also refer to someone or something named after, or believed to be named after, a person or, less commonly, a place or thing. A person, place, or thing named after a particular person share an eponymous relationship. In this way, Elizabeth I of England is the eponym of the Elizabethan era, but the Elizabethan e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Narayana Number
In combinatorics, the Narayana numbers \operatorname(n, k), n \in \mathbb^+, 1 \le k \le n form a triangular array of natural numbers, called the Narayana triangle, that occur in various Combinatorial enumeration, counting problems. They are named after Canadian mathematician Tadepalli Venkata Narayana, T. V. Narayana (1930–1987). Formula The Narayana numbers can be expressed in terms of binomial coefficients: : \operatorname(n, k) = \frac Numerical values The first eight rows of the Narayana triangle read: Combinatorial interpretations Dyck words An example of a counting problem whose solution can be given in terms of the Narayana numbers \operatorname(n, k), is the number of words containing pairs of parentheses, which are correctly matched (known as Dyck words) and which contain distinct nestings. For instance, \operatorname(4, 2) = 6, since with four pairs of parentheses, six sequences can be created which each contain two occurrences the sub-pattern : ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Motzkin Number
In mathematics, the th Motzkin number is the number of different ways of drawing non-intersecting chords between points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory. The Motzkin numbers M_n for n = 0, 1, \dots form the sequence: : 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, ... Examples The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle (): : The following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle (): : Properties The Motzkin numbers satisfy the recurrence relations :M_=M_+\sum_^M_iM_=\fracM_+\fracM_. The Motzkin numbers can be expressed in terms of binomial coefficients and Catalan numbers: :M_n=\sum_^ \binom C_k, and inversely, :C_=\sum_^ \binom M_k This gives :\sum_^C_ = 1 + \sum_^ \binom M_. The generating function m(x) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generating Function
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed. Generating functions are sometimes called generating series, in that a series of terms can be said to be the generator of its sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multinomial Coefficient
In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials. Theorem For any positive integer and any non-negative integer , the multinomial theorem describes how a sum with terms expands when raised to the th power: (x_1 + x_2 + \cdots + x_m)^n = \sum_ x_1^ \cdot x_2^ \cdots x_m^ where = \frac is a multinomial coefficient. The sum is taken over all combinations of nonnegative integer indices through such that the sum of all is . That is, for each term in the expansion, the exponents of the must add up to . In the case , this statement reduces to that of the binomial theorem. Example The third power of the trinomial is given by (a+b+c)^3 = a^3 + b^3 + c^3 + 3 a^2 b + 3 a^2 c + 3 b^2 a + 3 b^2 c + 3 c^2 a + 3 c^2 b + 6 a b c. This can be computed by hand using the distributive property of multiplication over additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pascal's Triangle
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy. The rows of Pascal's triangle are conventionally enumerated starting with row n = 0 at the top (the 0th row). The entries in each row are numbered from the left beginning with k = 0 and are usually staggered relative to the numbers in the adjacent rows. The triangle may be constructed in the following manner: In row 0 (the topmost row), there is a unique nonzero entry 1. Each entry of each subsequent row is constructed by adding the number above and to the left with the number above and to the right, treating blank entries as 0. For example, the initial number of row 1 (or any other row) is 1 (the sum of 0 and 1), whereas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]