HOME
*





Delannoy Number
In mathematics, a Delannoy number D describes the number of paths from the southwest corner (0, 0) of a rectangular grid to the northeast corner (''m'', ''n''), using only single steps north, northeast, or east. The Delannoy numbers are named after French army officer and amateur mathematician Henri Delannoy. The Delannoy number D(m,n) also counts the number of global alignments of two sequences of lengths m and n, the number of points in an ''m''-dimensional integer lattice or cross polytope which are at most ''n'' steps from the origin, and, in cellular automata, the number of cells in an ''m''-dimensional von Neumann neighborhood of radius ''n'' while the number of cells on a surface of an ''m''-dimensional von Neumann neighborhood of radius ''n'' is given with . Example The Delannoy number ''D''(3,3) equals 63. The following figure illustrates the 63 Delannoy paths from (0, 0) to (3, 3): The subset of paths that do not rise above the SW–NE diagonal are counted by a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or magnitude and, if so, how this could be done. At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes. For example, if a line is viewed as the set of all o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centered Square Number
In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given city block distance of the center dot on a regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and arithmetic properties. The figures for the first four centered square numbers are shown below: : Each centered square number is the sum of successive squares. Example: as shown in the following figure of Floyd's triangle, 25 is a centered square number, and is the sum of the square 16 (yellow rhombus formed by shearing a square) and of the next smaller square, 9 (sum of two blue triangles): Relationships with o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Sequences
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, even though we do not have a formula for the ''n''th perfect number. Examples Integer sequences that have their own name include: *Abundant numbers *Baum–Sweet sequence *Bell numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Narayana Number
In combinatorics, the Narayana numbers \operatorname(n, k), n \in \mathbb^+, 1 \le k \le n form a triangular array of natural numbers, called the Narayana triangle, that occur in various counting problems. They are named after Canadian mathematician T. V. Narayana (1930–1987). Formula The Narayana numbers can be expressed in terms of binomial coefficients: : \operatorname(n, k) = \frac Numerical values The first eight rows of the Narayana triangle read: Combinatorial interpretations Dyck words An example of a counting problem whose solution can be given in terms of the Narayana numbers \operatorname(n, k), is the number of words containing pairs of parentheses, which are correctly matched (known as Dyck words) and which contain distinct nestings. For instance, \operatorname(4, 2) = 6, since with four pairs of parentheses, six sequences can be created which each contain two occurrences the sub-pattern : (()(())) ((()())) ((())()) ()((())) (())(()) ((()) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Motzkin Number
In mathematics, the th Motzkin number is the number of different ways of drawing non-intersecting chords between points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory. The Motzkin numbers M_n for n = 0, 1, \dots form the sequence: : 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476, 73007772802, 208023278209, 593742784829, ... Examples The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle (): : The following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle (): : Properties The Motzkin numbers satisfy the recurrence relations :M_=M_+\sum_^M_iM_=\fracM_+\fracM_. The Motzkin numbers can be express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generating Function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the ''formal'' power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (except ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multinomial Coefficient
In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials. Theorem For any positive integer and any non-negative integer , the multinomial formula describes how a sum with terms expands when raised to an arbitrary power : :(x_1 + x_2 + \cdots + x_m)^n = \sum_ \prod_^m x_t^\,, where : = \frac is a multinomial coefficient. The sum is taken over all combinations of nonnegative integer indices through such that the sum of all is . That is, for each term in the expansion, the exponents of the must add up to . Also, as with the binomial theorem, quantities of the form that appear are taken to equal 1 ( even when equals zero). In the case , this statement reduces to that of the binomial theorem. Example The third power of the trinomial is given by :(a+b+c)^3 = a^3 + b^3 + c^3 + 3 a^2 b + 3 a^2 c + 3 b^2 a + 3 b^2 c + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pascal's Triangle
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in India, Persia, China, Germany, and Italy. The rows of Pascal's triangle are conventionally enumerated starting with row n = 0 at the top (the 0th row). The entries in each row are numbered from the left beginning with k = 0 and are usually staggered relative to the numbers in the adjacent rows. The triangle may be constructed in the following manner: In row 0 (the topmost row), there is a unique nonzero entry 1. Each entry of each subsequent row is constructed by adding the number above and to the left with the number above and to the right, treating blank entries as 0. For example, the initial number of row 1 (or any other row) is 1 (the sum of 0 and 1), whereas the numbers 1 and 3 in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Array
In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ''i''th row contains only ''i'' elements. Examples Notable particular examples include these: *The Bell triangle, whose numbers count the Partition of a set, partitions of a set in which a given element is the largest singleton (mathematics), singleton * Catalan's triangle, which counts strings of parentheses in which no close parenthesis is unmatched * Euler's triangle, which counts permutations with a given number of ascents * Floyd's triangle, whose entries are all of the integers in order * Hosoya's triangle, based on the Fibonacci numbers * Lozanić's triangle, used in the mathematics of chemical compounds * Narayana triangle, counting strings of balanced parentheses with a given number of distinct nestings * Pascal's triangle, whose entries are the binomial coefficients Triangular arrays of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centered Octahedral Number
A centered octahedral number or Haüy octahedral number is a figurate number that counts the number of points of a three-dimensional integer lattice that lie inside an octahedron centered at the origin. The same numbers are special cases of the Delannoy numbers, which count certain two-dimensional lattice paths. The Haüy octahedral numbers are named after René Just Haüy. History The name "Haüy octahedral number" comes from the work of René Just Haüy, a French mineralogist active in the late 18th and early 19th centuries. His "Haüy construction" approximates an octahedron as a polycube, formed by accreting concentric layers of cubes onto a central cube. The centered octahedral numbers count the number of cubes used by this construction. Haüy proposed this construction, and several related constructions of other polyhedra, as a model for the structure of crystalline minerals.. See in particulapp. 13–14 As cited by Formula The number of three-dimensional lattice po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Odd Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]