Degen's Eight-square Identity
In mathematics, Degen's eight-square identity establishes that the product of two numbers, each of which is a sum of eight squares, is itself the sum of eight squares. Namely: \begin & \left(a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2+a_7^2+a_8^2\right)\left(b_1^2+b_2^2+b_3^2+b_4^2+b_5^2+b_6^2+b_7^2+b_8^2\right) = \\ ex & \quad \left(a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4 - a_5 b_5 - a_6 b_6 - a_7 b_7 - a_8 b_8\right)^2+ \\ & \quad \left(a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3 + a_5 b_6 - a_6 b_5 - a_7 b_8 + a_8 b_7\right)^2+ \\ & \quad \left(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2 + a_5 b_7 + a_6 b_8 - a_7 b_5 - a_8 b_6\right)^2+ \\ & \quad \left(a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1 + a_5 b_8 - a_6 b_7 + a_7 b_6 - a_8 b_5\right)^2+ \\ & \quad \left(a_1 b_5 - a_2 b_6 - a_3 b_7 - a_4 b_8 + a_5 b_1 + a_6 b_2 + a_7 b_3 + a_8 b_4\right)^2+ \\ & \quad \left(a_1 b_6 + a_2 b_5 - a_3 b_8 + a_4 b_7 - a_5 b_2 + a_6 b_1 - a_7 b_4 + a_8 b_3\right)^2+ \\ & \quad \left(a_1 b_7 + a_2 b_8 + a_3 b_5 - a_4 b_6 - a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sedenions
In abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers; they are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the ''32-ions'' or ''trigintaduonions''. It is possible to continue applying the Cayley–Dickson construction arbitrarily many times. The term ''sedenion'' is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by . Arithmetic Like octonions, multiplication of sedenions is neither commutative nor associative. But in contrast to the octonions, the sedenions do not even have the property of be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. *Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive number th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Digital Library grant to the University of Illinois at Urbana–Champaign. History Eric W. Weisstein, the creator of the site, was a physics and astronomy student who got into the habit of writing notes on his mathematical readings. In 1995 he put his notes online and called it "Eric's Treasure Trove of Mathematics." It contained hundreds of pages/articles, covering a wide range of mathematical topics. The site became popular as an extensive single resource on mathematics on the web. Weisstein continuously improved the notes and accepted corrections and comments from online readers. In 1998, he made a contract with CRC Press and the contents of the site were published in print and CD-ROM form, titled "CRC Concise Encyclopedia of Mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latin Square
In combinatorics and in experimental design, a Latin square is an ''n'' × ''n'' array filled with ''n'' different symbols, each occurring exactly once in each row and exactly once in each column. An example of a 3×3 Latin square is The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares. History The Korean mathematician Choi Seok-jeong was the first to publish an example of Latin squares of order nine, in order to construct a magic square in 1700, predating Leonhard Euler by 67 years. Reduced form A Latin square is said to be ''reduced'' (also, ''normalized'' or ''in standard form'') if both its first row and its first column are in their natural order. For example, the La ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypercomplex Number
In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory. History In the nineteenth century number systems called quaternions, tessarines, coquaternions, biquaternions, and octonions became established concepts in mathematical literature, added to the real and complex numbers. The concept of a hypercomplex number covered them all, and called for a discipline to explain and classify them. The cataloguing project began in 1872 when Benjamin Peirce first published his ''Linear Associative Algebra'', and was carried forward by his son Charles Sanders Peirce. Most significantly, they identified the nilpotent and the idempotent elements as useful hypercomplex numbers for classifications. The Cayley–Dickson construction used involutions to generate complex numbers, quaternions, and oct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cayley–Dickson Construction
In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics. The Cayley–Dickson construction defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way (different from the componentwise multiplication) and an involution known as conjugation. The product of an element and its conjugate (or sometimes the square root of this product) is called the norm. The symmetries of the real field disappear as the Cayley–Dickson construction is repeatedly applied: first losing order, then commutativity of multiplication, associativity of multipli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Functions
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pfister's Sixteen-square Identity
In algebra, Pfister's sixteen-square identity is a non- bilinear identity of form \left(x_1^2+x_2^2+x_3^2+\cdots+x_^2\right)\left(y_1^2+y_2^2+y_3^2+\cdots+y_^2\right) = z_1^2+z_2^2+z_3^2+\cdots+z_^2 It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s, and independently by Albrecht Pfister around the same time. There are several versions, a concise one of which is \begin &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \\ &\scriptstyle \end If all x_i and y_i with i>8 are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The u_i are \begin &u_1 = \tfrac \\ &u_2 = \tfrac \\ &u_3 = \tfrac \\ &u_4 = \tfrac \\ &u_5 = \tfrac \\ &u_6 = \tfrac \\ &u_7 = \tfrac \\ &u_8 = \tfrac \end and, a=-1,\;\;b=0,\;\;c=x_1^2+x_2^2+x_3^2+x_4^2+x_5^ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bilinear Map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V and w_1, w_2 \in W, then B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w) and B(v, w_1 + w_2) = B(v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carl Ferdinand Degen
Carl Ferdinand Degen (1 November 1766 – 8 April 1825) was a Danish mathematician. His most important contributions were within number theory and he advised the young, aspiring Norwegian mathematician Niels Henrik Abel in a decisive way. Degen has received much of the credit for the introduction of more modern and advanced mathematics in the Danish-Norwegian school system. He was born in Braunschweig in Germany, but the family moved to Copenhagen in 1771 when his father Johan Philip Degen got a position in the Royal Danish Orchestra. As a musician he had a low salary, but his son Carl Ferdinand received a fellowship so that he could go to school in Helsingør. He graduated from there in 1783 and continued at the University of Copenhagen. Instead of following the normal path of studies, the young Degen followed his own interests and read classical languages, philosophy, natural sciences and in particular mathematics.Salmonsens Konservationsleksikon, ''Carl Ferdinand Degen'', Projek ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |