HOME
*





Daubechies Wavelet
The Daubechies wavelets, based on the work of Ingrid Daubechies, are a family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support. With each wavelet type of this class, there is a scaling function (called the ''father wavelet'') which generates an orthogonal multiresolution analysis. Properties In general the Daubechies wavelets are chosen to have the highest number ''A'' of vanishing moments, (this does not imply the best smoothness) for given support width (number of coefficients) 2''A''. There are two naming schemes in use, D''N'' using the length or number of taps, and db''A'' referring to the number of vanishing moments. So D4 and db2 are the same wavelet transform. Among the 2''A''−1 possible solutions of the algebraic equations for the moment and orthogonality conditions, the one is chosen whose scaling filter has extremal phase. The wavelet transform is also easy to put into p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daubechies20LowPassHighPass2DFilterM
Baroness Ingrid Daubechies ( ; ; born 17 August 1954) is a Belgian physicist and mathematician. She is best known for her work with wavelets in image compression. Daubechies is recognized for her study of the mathematical methods that enhance image-compression technology. She is a member of the National Academy of Engineering, the National Academy of Sciences and the American Academy of Arts and Sciences. She is a 1992 MacArthur Fellow. She also served on the Mathematical Sciences jury for the Infosys Prize from 2011 to 2013. The name Daubechies is widely associated with the orthogonal Daubechies wavelet and the biorthogonal CDF wavelet. A wavelet from this family of wavelets is now used in the JPEG 2000 standard. Her research involves the use of automatic methods from both mathematics, technology, and biology to extract information from samples such as bones and teeth. She also developed sophisticated image processing techniques used to help establish the authenticity and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermite Polynomials
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: * signal processing as Hermitian wavelets for wavelet transform analysis * probability, such as the Edgeworth series, as well as in connection with Brownian motion; * combinatorics, as an example of an Appell sequence, obeying the umbral calculus; * numerical analysis as Gaussian quadrature; * physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term \beginxu_\end is present); * systems theory in connection with nonlinear operations on Gaussian noise. * random matrix theory in Gaussian ensembles. Hermite polynomials were defined by Pierre-Simon Laplace in 1810, though in scarcely recognizable form, and studied in detail by Pafnuty Chebyshev in 1859. Chebyshev's work was overlooked, and they were named later after Charles Hermite, who wrote on the polynomials in 1864, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula :\binom nk = \frac, which using factorial notation can be compactly expressed as :\binom = \frac. For example, the fourth power of is :\begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for n=0,1,2,\ldots gives a triangular array called Pascal's triangle, satisfying the recurrence relation :\binom = \binom + \binom. The binomial coefficients occur in many areas of mathematics, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Binomial QMF
A binomial QMF – properly an orthonormal binomial quadrature mirror filter – is an orthogonal wavelet developed in 1990. The binomial QMF bank with perfect reconstruction (PR) was designed by Ali Akansu, and published in 1990, using the family of binomial polynomials for subband decomposition of discrete-time signals. Akansu and his fellow authors also showed that these binomial-QMF filters are identical to the wavelet filters designed independently by Ingrid Daubechies from compactly supported orthonormal wavelet transform perspective in 1988 (Daubechies wavelet). It was an extension of Akansu's prior work on Binomial coefficient In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ... and Hermite polynomials wherein he developed the Modified Hermite Transformation (MHT) in 1987. Lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ali Akansu
Ali Naci Akansu (born May 6, 1958) is a Turkish-American Professor of electrical & computer engineering and scientist in applied mathematics. He is best known for his seminal contributions to the theory and applications of linear subspace methods including sub-band and wavelet transforms, particularly the binomial QMF (also known as Daubechies wavelet) and the multivariate framework to design statistically optimized filter bank (eigen filter bank). Biography Akansu received his B.S. degree from the Istanbul Technical University, Turkey, in 1980, his M.S. and PhD degrees from the Polytechnic University (now New York University), Brooklyn, New York, in 1983 and 1987, respectively, all in Electrical Engineering. Since 1987, he has been with the New Jersey Institute of Technology where he is a Professor of Electrical and Computer Engineering. He was a Visiting Professor at Courant Institute of Mathematical Sciences of the New York University, 2009–2010. In 1990, he showed th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MATLAB
MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities. An additional package, Simulink, adds graphical multi-domain simulation and model-based design for dynamic and embedded systems. As of 2020, MATLAB has more than 4 million users worldwide. They come from various backgrounds of engineering, science, and economics. History Origins MATLAB was invented by mathematician and computer programmer Cleve Moler. The idea for MATLAB was based on his 1960s PhD thesis. Moler became a math professor at the University of New Mexico and starte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematica
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other programming languages. It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign, Illinois. The Wolfram Language is the programming language used in ''Mathematica''. Mathematica 1.0 was released on June 23, 1988 in Champaign, Illinois and Santa Clara, California. __TOC__ Notebook interface Wolfram Mathematica (called ''Mathematica'' by some of its users) is split into two parts: the kernel and the front end. The kernel interprets expressions (Wolfram Language code) and returns result expressions, which can then be displayed by the front end. The origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cohen–Daubechies–Feauveau Wavelet
Cohen–Daubechies–Feauveau wavelets are a family of biorthogonal wavelets that was made popular by Ingrid Daubechies. These are not the same as the orthogonal Daubechies wavelets, and also not very similar in shape and properties. However, their construction idea is the same. The JPEG 2000 compression standard uses the biorthogonal Le Gall–Tabatabai (LGT) 5/3 wavelet (developed by D. Le Gall and Ali J. Tabatabai) for lossless compression and a CDF 9/7 wavelet for lossy compression. Properties * The primal generator is a B-spline if the simple factorization q_\text(X) = 1 (see below) is chosen. * The dual generator has the highest possible number of smoothness factors for its length. * All generators and wavelets in this family are symmetric. Construction For every positive integer ''A'' there exists a unique polynomial Q_A(X) of degree ''A'' − 1 satisfying the identity :\left(1 - \frac\right)^A\,Q_A(X) + \left(\frac\right)^A\,Q_A(2 - X) = 1. This is the same polyno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Haar Wavelet
In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and extensively used as a teaching example. The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval  , 1 The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1. The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for the a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second. If this wavelet were to be convolved with a signal created from the recording of a melody, then the resulting signal would be useful for determining when the Middle C note appeared in the song. Mathematically, a wavelet correlates with a signal if a portion of the signal is similar. Correlation is at the core of many practical wavelet applications. As a mathematical tool, wavelets can be used to extract information from many different kinds of data, including but not limited to au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quadrature Mirror Filter
In digital signal processing, a quadrature mirror filter is a filter whose magnitude response is the mirror image around \pi/2 of that of another filter. Together these filters, first introduced by Croisier et al., are known as the quadrature mirror filter pair. A filter H_1(z) is the quadrature mirror filter of H_0(z) if H_1(z) = H_0(-z). The filter responses are symmetric about \Omega = \pi / 2: : \big, H_1\big(e^\big)\big, = \big, H_0\big(e^\big)\big, . In audio/voice codecs, a quadrature mirror filter pair is often used to implement a filter bank that splits an input signal into two bands. The resulting high-pass and low-pass signals are often reduced by a factor of 2, giving a critically sampled two-channel representation of the original signal. The analysis filters are often related by the following formula in addition to quadrate mirror property: : \big, H_0\big(e^\big)\big, ^2 + \big, H_1\big(e^\big)\big, ^2 = 1, where \Omega is the frequency, and the sampling rate is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]