DFMA
DFMA stands for Design for Manufacture and Assembly. DFMA is the combination of two methodologies; Design for Manufacture, which means the design for ease of manufacture of the parts that will form a product, and Design for Assembly, which means the design of the product for ease of assembly deriving creative ideas at the same time. Usage DFMA is used as the basis for concurrent engineering Concurrent engineering (CE) or concurrent design and manufacturing is a work methodology emphasizing the parallelization of tasks (i.e. performing tasks concurrently), which is sometimes called simultaneous engineering or integrated product develo ... studies to provide guidance to the design team in simplifying the product structure, to reduce manufacturing and assembly costs, and to quantify improvements. The practice of applying DFMA is to identify, quantify and eliminate waste or inefficiency in a product design. DFMA is therefore a component of Lean Manufacturing DFMA is also used as a b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Design For Manufacturability
Design for manufacturability (also sometimes known as design for manufacturing or DFM) is the general engineering practice of designing products in such a way that they are easy to manufacture. The concept exists in almost all engineering disciplines, but the implementation differs widely depending on the manufacturing technology. DFM describes the process of designing or engineering a product in order to facilitate the manufacturing process in order to reduce its manufacturing costs. DFM will allow potential problems to be fixed in the design phase which is the least expensive place to address them. Other factors may affect the manufacturability such as the type of raw material, the form of the raw material, dimensional tolerances, and secondary processing such as finishing. Depending on various types of manufacturing processes there are set guidelines for DFM practices. These DFM guidelines help to precisely define various tolerances, rules and common manufacturing checks relate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Design For Assembly
Design for assembly (DFA) is a process by which product design, products are designed with ease of Manufacturing, assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs. In addition, if the parts are provided with features which make it easier to grasp, move, orient and insert them, this will also reduce assembly time and assembly costs. The reduction of the number of parts in an assembly has the added benefit of generally reducing the total cost of parts in the assembly. This is usually where the major cost benefits of the application of design for assembly occur. Approaches Design for assembly can take different forms. In the 1960s and 1970s various rules and recommendations were proposed in order to help designers consider assembly problems during the design process. Many of these rules and recommendations were presented together with practical examples showing how assembly difficulty could be improved. Howeve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concurrent Engineering
Concurrent engineering (CE) or concurrent design and manufacturing is a work methodology emphasizing the parallelization of tasks (i.e. performing tasks concurrently), which is sometimes called simultaneous engineering or integrated product development (IPD) using an integrated product team approach. It refers to an approach used in product development in which functions of design engineering, manufacturing engineering, and other functions are integrated to reduce the time required to bring a new product to market. By completing the design and manufacturing stages at the same time, products are produced in less time while lowering cost. Although concurrent design and manufacturing requires extensive communication and coordination between disciplines, the benefits can increase the profit of a business and lead to a sustainable environment for product development. Concurrent design and manufacturing can lead to a competitive advantage over other businesses as the product maybe produc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lean Manufacturing
Lean manufacturing is a production method aimed primarily at reducing times within the production system as well as response times from suppliers and to customers. It is closely related to another concept called just-in-time manufacturing (JIT manufacturing in short). Just-in-time manufacturing tries to match production to demand by only supplying goods which have been ordered and focuses on efficiency, productivity (with a commitment to continuous improvement) and reduction of "wastes" for the producer and supplier of goods. Lean manufacturing adopts the just-in-time approach and additionally focuses on reducing cycle, flow and throughput times by further eliminating activities which do not add any value for the customer. Lean manufacturing also involves people who work outside of the manufacturing process, such as in marketing and customer service. Lean manufacturing is particularly related to the operational model implemented in the post-war 1950s and 1960s by the Japa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Development
In business and engineering, new product development (NPD) covers the complete process of bringing a new product to market, renewing an existing product or introducing a product in a new market. A central aspect of NPD is product design, along with various business considerations. New product development is described broadly as the transformation of a market opportunity into a product available for sale. The products developed by an organisation provide the means for it to generate income. For many technology-intensive firms their approach is based on exploiting technological innovation in a rapidly changing market. The product can be tangible (something physical which one can touch) or intangible (like a service or experience), though sometimes services and other processes are distinguished from "products". NPD requires an understanding of customer needs and wants, the competitive environment, and the nature of the market. Cost, time, and quality are the main variables that driv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |