HOME
*





D'Alembert's Equation
In mathematics, d'Alembert's equation is a first order nonlinear ordinary differential equation, named after the French mathematician Jean le Rond d'Alembert. The equation reads asDavis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962. :y = x f(p) + g(p) where p=dy/dx. After differentiating once, and rearranging we have :\frac + \frac=0 The above equation is linear. When f(p)=p, d'Alembert's equation is reduced to Clairaut's equation In mathematical analysis, Clairaut's equation (or the Clairaut equation) is a differential equation of the form :y(x)=x\frac+f\left(\frac\right) where ''f'' is continuously differentiable. It is a particular case of the Lagrange differential eq .... References Equations of physics Mathematical physics Differential equations Ordinary differential equations {{Mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

D'Alembert's Principle
D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert. D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing ''forces of inertia'' which, when added to the applied forces in a system, result in ''dynamic equilibrium''. The principle does not apply for irreversible displacements, such as sliding friction, and more general specification of the irreversibility is required. D'Alembert's principle is more general than Hamilton's principle as it is not restricted to holonomic constraints that depend only on coordinates and time but not on velocities. Statement of the principle The principle states that the sum of the differences between the forces acting on a system of massive particles and the time derivatives of the momenta of the system itself ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D'Alembert's Formula
In mathematics, and specifically partial differential equations (PDEs), d'Alembert's formula is the general solution to the one-dimensional wave equation u_(x,t) = c^2 u_(x,t) (where subscript indices indicate partial differentiation, using the d'Alembert operator, the PDE becomes: \Box u = 0). The solution depends on the initial conditions at t = 0: u(x, 0) and u_t(x, 0). It consists of separate terms for the initial conditions u(x,0) and u_t(x,0): u(x,t) = \frac\left[u(x-ct, 0) + u(x+ct, 0)\right] + \frac \int_^ u_t(\xi, 0) \, d\xi. It is named after the mathematician Jean le Rond d'Alembert, who derived it in 1747 as a solution to the problem of a String vibration, vibrating string. Details The method of characteristics, characteristics of the PDE are x \pm ct = \mathrm (where \pm sign states the two solutions to quadratic equation), so we can use the change of variables \mu = x + ct (for the positive solution) and \eta = x-ct (for the negative solution) to transform the PD ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D'Alembert Operator
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: \Box), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (''cf''. nabla symbol) is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert. In Minkowski space, in standard coordinates , it has the form : \begin \Box & = \partial^\mu \partial_\mu = \eta^ \partial_\nu \partial_\mu = \frac \frac - \frac - \frac - \frac \\ & = \frac - \nabla^2 = \frac - \Delta ~~. \end Here \nabla^2 := \Delta is the 3-dimensional Laplacian and is the inverse Minkowski metric with :\eta_ = 1, \eta_ = \eta_ = \eta_ = -1, \eta_ = 0 for \mu \neq \nu. Note that the and summation indices range from 0 to 3: see Einstein notation. We have assumed units such that the speed of light = 1. (Some authors alternatively use the negative metric signature of , with \eta_ = -1,\; \eta_ = \eta_ = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast with the term partial differential equation which may be with respect to ''more than'' one independent variable. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where , ..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of the unknown function of the variable . Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jean Le Rond D'Alembert
Jean-Baptiste le Rond d'Alembert (; ; 16 November 1717 – 29 October 1783) was a French mathematician, mechanician, physicist, philosopher, and music theorist. Until 1759 he was, together with Denis Diderot, a co-editor of the ''Encyclopédie''. D'Alembert's formula for obtaining solutions to the wave equation is named after him. The wave equation is sometimes referred to as d'Alembert's equation, and the fundamental theorem of algebra is named after d'Alembert in French. Early years Born in Paris, d'Alembert was the natural son of the writer Claudine Guérin de Tencin and the chevalier Louis-Camus Destouches, an artillery officer. Destouches was abroad at the time of d'Alembert's birth. Days after birth his mother left him on the steps of the church. According to custom, he was named after the patron saint of the church. D'Alembert was placed in an orphanage for foundling children, but his father found him and placed him with the wife of a glazier, Madame Rousseau, with who ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clairaut's Equation
In mathematical analysis, Clairaut's equation (or the Clairaut equation) is a differential equation of the form :y(x)=x\frac+f\left(\frac\right) where ''f'' is continuously differentiable. It is a particular case of the Lagrange differential equation. It is named after the French mathematician Alexis Clairaut, who introduced it in 1734. Definition To solve Clairaut's equation, one differentiates with respect to ''x'', yielding :\frac=\frac+x\frac+f'\left(\frac\right)\frac, so :\left +f'\left(\frac\right)\rightfrac = 0. Hence, either :\frac = 0 or :x+f'\left(\frac\right) = 0. In the former case, ''C'' = ''dy''/''dx'' for some constant ''C''. Substituting this into the Clairaut's equation, one obtains the family of straight line functions given by :y(x)=Cx+f(C),\, the so-called ''general solution'' of Clairaut's equation. The latter case, :x+f'\left(\frac\right) = 0, defines only one solution ''y''(''x''), the so-called ''singular solution'', whose graph is the en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equations Of Physics
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in French an ''équation'' is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. ''Solving'' an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables. An equation is written as two expressions, connected by an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]