D-module
   HOME
*





D-module
In mathematics, a ''D''-module is a module (mathematics), module over a ring (mathematics), ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Since around 1970, ''D''-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial. Early major results were the Kashiwara constructibility theorem and Kashiwara index theorem of Masaki Kashiwara. The methods of ''D''-module theory have always been drawn from sheaf theory and other techniques with inspiration from the work of Alexander Grothendieck in algebraic geometry. The approach is global in character, and differs from the functional analysis techniques traditionally used to study differential operators. The strongest results are obtained for over-determined systems (holonomic systems), and on the charac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann–Hilbert Correspondence
In mathematics, the term Riemann–Hilbert correspondence refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in Hilbert's twenty-first problem was for the Riemann sphere, where it was about the existence of systems of linear regular differential equations with prescribed monodromy representations. First the Riemann sphere may be replaced by an arbitrary Riemann surface and then, in higher dimensions, Riemann surfaces are replaced by complex manifolds of dimension > 1. There is a correspondence between certain systems of partial differential equations (linear and having very special properties for their solutions) and possible monodromies of their solutions. Such a result was proved for algebraic connections with regular singularities by Pierre Deligne (1970, generalizing existing work in the case o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernstein–Sato Polynomial
In mathematics, the Bernstein–Sato polynomial is a polynomial related to differential operators, introduced independently by and , . It is also known as the b-function, the b-polynomial, and the Bernstein polynomial, though it is not related to the Bernstein polynomials used in approximation theory. It has applications to singularity theory, monodromy theory, and quantum field theory. gives an elementary introduction, while and give more advanced accounts. Definition and properties If f(x) is a polynomial in several variables, then there is a non-zero polynomial b(s) and a differential operator P(s) with polynomial coefficients such that :P(s)f(x)^ = b(s)f(x)^s. The Bernstein–Sato polynomial is the monic polynomial of smallest degree amongst such polynomials b(s). Its existence can be shown using the notion of holonomic D-modules. proved that all roots of the Bernstein–Sato polynomial are negative rational numbers. The Bernstein–Sato polynomial can also be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Masaki Kashiwara
is a Japanese mathematician. He was a student of Mikio Sato at the University of Tokyo. Kashiwara made leading contributions towards algebraic analysis, microlocal analysis, D-module, ''D''-module theory, Hodge theory, sheaf theory and representation theory. Kashiwara and Sato established the foundations of the theory of systems of linear partial differential equations with analytic coefficients, introducing a cohomological approach that follows the spirit of Grothendieck's theory of scheme (mathematics), schemes. Joseph Bernstein, Bernstein introduced a similar approach in the polynomial coefficients case. Kashiwara's master thesis states the foundations of D-module, ''D''-module theory. His PhD thesis proves the rationality of the roots of b-functions (Bernstein–Sato polynomials), using ''D''-module theory and resolution of singularities. He was a plenary speaker at International Congress of Mathematicians, 1978, Helsinki and an invited speaker, 1990, Kyoto. He is a member o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zoghman Mebkhout
Zoghman Mebkhout (born 1949 ) (مبخوت زغمان) is a French-Algerian mathematician. He is known for his work in algebraic analysis, geometry and representation theory, more precisely on the theory of ''D''-modules. Career Mebkhout is currently a research director at the French National Centre for Scientific Research and in 2002 Zoghman received the Servant Medal from the CNRS a prize given every two years with an amount of €10,000. Notable works In September 1979 Mebkhout presented the Riemann–Hilbert correspondence, which is a generalization of Hilbert's twenty-first problem to higher dimensions. The original setting was for Riemann surfaces, where it was about the existence of regular differential equations with prescribed monodromy groups. In higher dimensions, Riemann surfaces are replaced by complex manifolds of dimension > 1. Certain systems of partial differential equations (linear and having very special properties for their solutions) and possib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made remarkab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Bernstein
Joseph Bernstein (sometimes spelled I. N. Bernshtein; he, יוס(י)ף נאומוביץ ברנשטיין; russian: Иосиф Наумович Бернштейн; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv University. He works in algebraic geometry, representation theory, and number theory. Biography Bernstein received his Ph.D. in 1972 under Israel Gelfand at Moscow State University. In 1981, he emigrated to the United States due to growing anti-semitism in the Soviet Union. Bernstein was a professor at Harvard during 1983-1993. He was a visiting scholar at the Institute for Advanced Study in 1985-86 and again in 1997-98. In 1993, he moved to Israel to take a professorship at Tel Aviv University (emeritus since 2014). Awards and honors Bernstein received a gold medal at the 1962 International Mathematical Olympiad. He was elected to the Israel Academy of Sciences and Humanities in 2002 and was elected to the United States National Academ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Theory
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mikio Sato
is a Japanese mathematician known for founding the fields of algebraic analysis, hyperfunctions, and holonomic quantum fields. He is a professor at the Research Institute for Mathematical Sciences in Kyoto. Education Sato studied at the University of Tokyo and then did graduate study in physics as a student of Shin'ichiro Tomonaga. Since 1970, Sato has been professor at the Research Institute for Mathematical Sciences attached to Kyoto University. His disciples include Masaki Kashiwara, Takahiro Kawai, Tetsuji Miwa, and Michio Jimbo, who have been called the "Sato School". Research Sato is known for his innovative work in a number of fields, such as prehomogeneous vector spaces and Bernstein–Sato polynomials; and particularly for his hyperfunction theory. This theory initially appeared as an extension of the ideas of distribution theory; it was soon connected to the local cohomology theory of Grothendieck, for which it was an independent realization in terms of sheaf the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Analysis
Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of functions such as hyperfunctions and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces. It helps in the simplification of the proofs due to an algebraic description of the problem considered. Microfunction Let ''M'' be a real-analytic manifold of dimension ''n'', and let ''X'' be its complexification. The sheaf of microlocal functions on ''M'' is given as :\mathcal^n(\mu_M(\mathcal_X) \otimes \mathcal_) where * \mu_M denotes the microlocalization functor, * \mathcal_ is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involutive System
In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of ''r'' vector fields mesh into coordinate grids on ''r''-dimensional integral manifolds. The theorem is foundational in differential topology and calculus on manifolds. Introduction In its most elementary form, the theorem addresses the problem of finding a maximal set of ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]