Curvature Of A Measure
   HOME
*





Curvature Of A Measure
In mathematics, the curvature of a measure defined on the Euclidean plane R2 is a quantification of how much the measure's "distribution of mass" is "curved". It is related to notions of curvature in geometry. In the form presented below, the concept was introduced in 1995 by the mathematician Mark S. Melnikov; accordingly, it may be referred to as the Melnikov curvature or Menger-Melnikov curvature. Melnikov and Verdera (1995) established a powerful connection between the curvature of measures and the Cauchy kernel. Definition Let ''μ'' be a Borel measure on the Euclidean plane R2. Given three (distinct) points ''x'', ''y'' and ''z'' in R2, let ''R''(''x'', ''y'', ''z'') be the radius of the Euclidean circle that joins all three of them, or +∞ if they are collinear. The Menger curvature ''c''(''x'', ''y'', ''z'') is defined to be :c(x, y, z) = \frac, with the natural convention that ''c''(''x'', ''y'', ''z'') = 0 if ''x'', ''y'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial Measure
In mathematics, specifically in measure theory, the trivial measure on any measurable space (''X'', Σ) is the measure ''μ'' which assigns zero measure to every measurable set: ''μ''(''A'') = 0 for all ''A'' in Σ. Properties of the trivial measure Let ''μ'' denote the trivial measure on some measurable space (''X'', Σ). * A measure ''ν'' is the trivial measure ''μ'' if and only if ''ν''(''X'') = 0. * ''μ'' is an invariant measure (and hence a quasi-invariant measure) for any measurable function ''f'' : ''X'' → ''X''. Suppose that ''X'' is a topological space and that Σ is the Borel ''σ''-algebra on ''X''. * ''μ'' trivially satisfies the condition to be a regular measure. * ''μ'' is never a strictly positive measure, regardless of (''X'', Σ), since every measurable set has zero measure. * Since ''μ''(''X'') = 0, ''μ'' is always a finite measure, and hence a locally finite measure. * If ''X'' is a Hausdorff top ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

Matematicheskii Sbornik
''Matematicheskii Sbornik'' (russian: Математический сборник, abbreviated ''Mat. Sb.'') is a peer reviewed Russian mathematical journal founded by the Moscow Mathematical Society in 1866. It is the oldest successful Russian mathematical journal. The English translation is ''Sbornik: Mathematics''. It is also sometimes cited under the alternative name ''Izdavaemyi Moskovskim Matematicheskim Obshchestvom'' or its French translation ''Recueil mathématique de la Société mathématique de Moscou'', but the name ''Recueil mathématique'' is also used for an unrelated journal, '' Mathesis''. Yet another name, ''Sovetskii Matematiceskii Sbornik'', was listed in a statement in the journal in 1931 apologizing for the former editorship of Dmitri Egorov, who had been recently discredited for his religious views; however, this name was never actually used by the journal. The first editor of the journal was Nikolai Brashman, who died before its first issue (dedicated to h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bounded Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates—the magnitude or ''modulus'' of the product is the product of the two absolute values, or moduli, and the angle or ''argument'' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes known as the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol ''z'', which can be separated into its real (''x'') an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hausdorff Measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in ,∞to each set in \R^n or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. Likewise, the one-dimensional Hausdorff measure of a simple curve in \R^n is equal to the length of the curve, and the two-dimensional Hausdorff measure of a Lebesgue-measurable subset of \R^2 is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes the Lebesgue measure and its notions of counting, length, and area. It also generalizes volume. In fact, there are ''d''-dimensional Hausdorff measures for any ''d'' ≥ 0, which is not necessarily an integer. These measures are fundame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called ''n''-dimensional volume, ''n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set ''A'' is here denoted by ''λ''(''A''). Henri Lebesgue described this measure in the year 1901, followed the next year by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq\mathbb, the Lebesgue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (measure Theory)
In mathematics, the support (sometimes topological support or spectrum) of a measure ''μ'' on a measurable topological space (''X'', Borel(''X'')) is a precise notion of where in the space ''X'' the measure "lives". It is defined to be the largest (closed) subset of ''X'' for which every open neighbourhood of every point of the set has positive measure. Motivation A (non-negative) measure \mu on a measurable space (X, \Sigma) is really a function \mu : \Sigma \to , +\infty. Therefore, in terms of the usual definition of support, the support of \mu is a subset of the σ-algebra \Sigma : :\operatorname (\mu) := \overline, where the overbar denotes set closure. However, this definition is somewhat unsatisfactory: we use the notion of closure, but we do not even have a topology on \Sigma . What we really want to know is where in the space X the measure \mu is non-zero. Consider two examples: # Lebesgue measure \lambda on the real line \mathbb . It seems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Measure
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. Definition A Dirac measure is a measure on a set (with any -algebra of subsets of ) defined for a given and any (measurable) set by :\delta_x (A) = 1_A(x)= \begin 0, & x \not \in A; \\ 1, & x \in A. \end where is the indicator function of . The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome in the sample space . We can also say that the measure is a single atom at ; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence. The Dirac measures are the extreme points of the convex set of probability measures on . The name is a back-formation from the Dirac delta func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Menger Curvature
In mathematics, the Menger curvature of a triple of points in ''n''-dimensional Euclidean space R''n'' is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian-American mathematician Karl Menger. Definition Let ''x'', ''y'' and ''z'' be three points in R''n''; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line. Let Π ⊆ R''n'' be the Euclidean plane spanned by ''x'', ''y'' and ''z'' and let ''C'' ⊆ Π be the unique Euclidean circle in Π that passes through ''x'', ''y'' and ''z'' (the circumcircle of ''x'', ''y'' and ''z''). Let ''R'' be the radius of ''C''. Then the Menger curvature ''c''(''x'', ''y'', ''z'') of ''x'', ''y'' and ''z'' is defined by :c (x, y, z) = \frac1. If the three points are collinear, ''R'' can be informally considered to be +∞, and it makes rigorous sense to define ''c''(''x'', ''y'', ''z'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Plane
In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of parallel lines, and also metrical notions of distance, circles, and angle measurement. The set \mathbb^2 of pairs of real numbers (the real coordinate plane) augmented by appropriate structure often serves as the canonical example. History Books I through IV and VI of Euclid's Elements dealt with two-dimensional geometry, developing such notions as similarity of shapes, the Pythagorean theorem (Proposition 47), equality of angles and areas, parallelism, the sum of the angles in a triangle, and the three cases in which triangles are "equal" (have the same area), among many other topics. Later, the plane was described in a so-called '' Cartesian coordinate system'', a coordinate system that specifies each point uniquely in a plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]