Curvature Invariant (general Relativity)
   HOME
*





Curvature Invariant (general Relativity)
In general relativity, curvature invariants are a set of scalars formed from the Riemann, Weyl and Ricci tensors - which represent curvature, hence the name, - and possibly operations on them such as contraction, covariant differentiation and dualisation. Certain invariants formed from these curvature tensors play an important role in classifying spacetimes. Invariants are actually less powerful for distinguishing locally non- isometric Lorentzian manifolds than they are for distinguishing Riemannian manifolds. This means that they are more limited in their applications than for manifolds endowed with a positive definite metric tensor. Principal invariants The principal invariants of the Riemann and Weyl tensors are certain quadratic polynomial invariants (i.e., sums of squares of components). The principal invariants of the Riemann tensor of a four-dimensional Lorentzian manifold are #the '' Kretschmann scalar'' K_1 = R_ \, R^ #the ''Chern–Pontryagin scalar'' K_2 = _ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant (physics)
In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants. Examples In classical and quantum mechanics, invariance of space under translation results in momentum being an invariant and the conservation of momentum, whereas invariance of the origin of time, i.e. translation in time, results in energy being an invariant and the conservation of energy. In general, by Noether's theorem, any invariance of a physical system under a continuous symmetry leads to a fundamental conservation law. In crystals, the electron density is peri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Scalar
In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars \ which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime. Definitions Given a complex null tetrad \ and with the convention \, the Weyl-NP scalars are defined byJeremy Bransom Griffiths, Jiri Podolsky. ''Exact Space-Times in Einstein's General Relativity''. Cambridge: Cambridge University Press, 2009. Chapter 2.Valeri P Frolov, Igor D Novikov. ''Black Hole Physics: Basic Concepts and New Developments''. Berlin: Springer, 1998. Appendix E.Abhay Ashtekar, Stephen Fairhurst, Badri Krishnan. ''Isolated horizons: Hamiltonian evolution and the first law''. Physical Review D, 2000, 62(10): 104025. Appendix Bgr-qc/0005083/ref> :\Psi_0 := C_ l^\alpha m^\beta l^\gamma m^\delta\ , :\Psi_1 := C_ l^\alpha n^\beta l^\gamma m^\delta\ , :\Psi_2 := C_ l^\alpha m^\beta \bar^\gamma n^\delta\ , :\Psi_3 := C_ l^\alpha n^\beta \bar^\gamma n^\d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Traceless
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topogravitic Tensor
In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953 and by Lluis Bel in 1958. This decomposition is particularly important in general relativity. This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations. Decomposition of the Riemann tensor In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field \vec, not necessarily geodesic or hypersurface orthogonal, consists of three pieces: # the ''electrogravitic tensor'' E vec = R_ \, X^m \, X^n #* Also known as the tidal tensor. It can be physically interpreted as giving the tidal stresses on sma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetogravitic Tensor
In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953 and by Lluis Bel in 1958. This decomposition is particularly important in general relativity. This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations. Decomposition of the Riemann tensor In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field \vec, not necessarily geodesic or hypersurface orthogonal, consists of three pieces: # the ''electrogravitic tensor'' E[\vec]_ = R_ \, X^m \, X^n #* Also known as the tidal tensor. It can be physically interpreted as giving the tidal stresses on smal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electrogravitic Tensor
In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953 and by Lluis Bel in 1958. This decomposition is particularly important in general relativity. This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations. Decomposition of the Riemann tensor In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field \vec, not necessarily geodesic or hypersurface orthogonal, consists of three pieces: # the ''electrogravitic tensor'' E vec = R_ \, X^m \, X^n #* Also known as the tidal tensor. It can be physically interpreted as giving the tidal stresses on sma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bel Decomposition
In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953 and by Lluis Bel in 1958. This decomposition is particularly important in general relativity. This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations. Decomposition of the Riemann tensor In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field \vec, not necessarily geodesic or hypersurface orthogonal, consists of three pieces: # the ''electrogravitic tensor'' E vec = R_ \, X^m \, X^n #* Also known as the tidal tensor. It can be physically interpreted as giving the tidal stresses on sma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ricci Scalar
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor. The definition of scalar curvature via partial derivatives is also valid in the more general setting of pseudo-Riemannian manifolds. This is significant in general relativity, where scalar curvature of a Lorentzian metric is one of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ricci Decomposition
In the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry. Definition of the decomposition Let (''M'',''g'') be a Riemannian or pseudo-Riemannian ''n''-manifold. Consider its Riemann curvature, as a (0,4)-tensor field. This article will follow the sign convention :R_=g_\Big(\partial_i\Gamma_^p-\partial_j\Gamma_^p+\Gamma_^p\Gamma_^q-\Gamma_^p\Gamma_^q\Big); written multilinearly, this is the convention :\operatorname(W,X,Y,Z)=g\Big(\nabla_W\nabla_XY-\nabla_X\nabla_WY-\nabla_Y,Z\Big). With this convention, the Ricci tensor is a (0,2)-tensor field defined by ''Rjk''=''gilRijkl'' and the scalar curvature is defined by ''R''=''gjkRjk.'' Define the traceless Ricci tensor :Z_=R_-\fracRg_, and then define three (0, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi ( Greek lower-case letter chi). The Euler characteristic was originally defined for polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic \chi was classically defined for the surfaces of polyhedra, acc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instanton
An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime. In such quantum theories, solutions to the equations of motion may be thought of as critical points of the action. The critical points of the action may be local maxima of the action, local minima, or saddle points. Instantons are important in quantum field theory because: * they appear in the path integral as the leading quantum corrections to the classical behavior of a system, and * they can be used to study the tunneling behavior in various systems such as a Yang–Mills theory. Relevant to dynamics, families of instantons permit that instantons, i.e. different critical points of the equation of motion, be related to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]