Convergence Of Fourier Series
   HOME
*



picture info

Convergence Of Fourier Series
In mathematics, the question of whether the Fourier series of a periodic function convergent series, converges to a given function (mathematics), function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp space, ''L''''p'' spaces, summability methods and the Cesàro mean. Preliminaries Consider ''f'' an Lebesgue integration, integrable function on the interval . For such an ''f'' the Fourier coefficients \widehat(n) are defined by the formula :\widehat(n)=\frac\int_0^f(t)e^\,\mathrmt, \quad n \in \Z. It is common to describe the connection between ''f'' and its Fourier series by :f \sim \sum_n \widehat(n) e^. The notation ~ here means that the sum represents the function in some sense. To invest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modulus Of Continuity
In mathematical analysis, a modulus of continuity is a function ω : , ∞→ , ∞used to measure quantitatively the uniform continuity of functions. So, a function ''f'' : ''I'' → R admits ω as a modulus of continuity if and only if :, f(x)-f(y), \leq\omega(, x-y, ), for all ''x'' and ''y'' in the domain of ''f''. Since moduli of continuity are required to be infinitesimal at 0, a function turns out to be uniformly continuous if and only if it admits a modulus of continuity. Moreover, relevance to the notion is given by the fact that sets of functions sharing the same modulus of continuity are exactly equicontinuous families. For instance, the modulus ω(''t'') := ''kt'' describes the k-Lipschitz functions, the moduli ω(''t'') := ''kt''α describe the Hölder continuity, the modulus ω(''t'') := ''kt''(, log ''t'', +1) describes the almost Lipschitz class, and so on. In general, the role of ω is to fix some explicit functional dependence of ε on δ in the (ε, δ) definiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carleson's Theorem
Carleson's theorem is a fundamental result in mathematical analysis establishing the pointwise (Lebesgue) almost everywhere convergence of Fourier series of functions, proved by . The name is also often used to refer to the extension of the result by to functions for (also known as the ''Carleson–Hunt theorem'') and the analogous results for pointwise almost everywhere convergence of Fourier integrals, which can be shown to be equivalent by transference methods. Statement of the theorem The result, in the form of its extension by Hunt, can be formally stated as follows: The analogous result for Fourier integrals can be formally stated as follows: History A fundamental question about Fourier series, asked by Fourier himself at the beginning of the 19th century, is whether the Fourier series of a continuous function converges pointwise to the function. By strengthening the continuity assumption slightly one can easily show that the Fourier series converges everywhe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details. A topological space X is called a Baire space if it satisfies any of the follo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Category Theorem
The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the intersection of countably many dense open sets is still dense). It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis. Versions of the Baire category theorem were first proved independently in 1897 by Osgood for the real line \R and in 1899 by Baire for Euclidean space \R^n. Statement A Baire space is a topological space X in which every countable intersection of open dense sets is dense in X. See the corresponding article for a list of equivalent characterizations, as some are more useful than others depending on the application. * (BCT1) Every complete pseudometric space is a Baire space. In particular, every completely metrizable topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Uniform Boundedness Principle
In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus, but it was also proven independently by Hans Hahn. Theorem The completeness of X enables the following short proof, using the Baire category theorem. There are also simple proofs not using the Baire theorem . Corollaries The above corollary does claim that T_n converges to T in operator norm, that is, uniformly on bounded sets. However, since \left\ is bounded in operator norm, and the limit operator T is continuous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trigonometric Series
In mathematics, a trigonometric series is a infinite series of the form : \frac+\displaystyle\sum_^(A_ \cos + B_ \sin), an infinite version of a trigonometric polynomial. It is called the Fourier series of the integrable function f if the terms A_ and B_ have the form: :A_=\frac\displaystyle\int^_0\! f(x) \cos \,dx\qquad (n=0,1,2,3 \dots) :B_=\frac\displaystyle\int^_0\! f(x) \sin\, dx\qquad (n=1,2,3, \dots) The zeros of a trigonometric series The uniqueness and the zeros of trigonometric series was an active area of research in 19th century Europe. First, Georg Cantor proved that if a trigonometric series is convergent to a function f(x) on the interval , 2\pi/math>, which is identically zero, or more generally, is nonzero on at most finitely many points, then the coefficients of the series are all zero. Later Cantor proved that even if the set ''S'' on which f is nonzero is infinite, but the derived set ''S of ''S'' is finite, then the coefficients are all zero. In fact, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dini Test
In mathematics, the Dini and Dini–Lipschitz tests are highly precise tests that can be used to prove that the Fourier series of a function converges at a given point. These tests are named after Ulisse Dini and Rudolf Lipschitz. Definition Let be a function on ,2 let be some point and let be a positive number. We define the local modulus of continuity at the point by :\left.\right.\omega_f(\delta;t)=\max_ , f(t)-f(t+\varepsilon), Notice that we consider here to be a periodic function, e.g. if and is negative then we define . The global modulus of continuity (or simply the modulus of continuity) is defined by :\omega_f(\delta) = \max_t \omega_f(\delta;t) With these definitions we may state the main results: :Theorem (Dini's test): Assume a function satisfies at a point that ::\int_0^\pi \frac\omega_f(\delta;t)\,\mathrm\delta < \infty. :Then the Fourier series of converges at to . For example, the theorem holds with but does not hold with . :Theorem ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hölder Condition
In mathematics, a real or complex-valued function ''f'' on ''d''-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants ''C'', α > 0, such that : , f(x) - f(y) , \leq C\, x - y\, ^ for all ''x'' and ''y'' in the domain of ''f''. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the ''exponent'' of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder. We have the following chain of strict inclusions for functions over a closed and bounded non-trivial interval of the real line: : Continuously differentiable ⊂ Lipschitz continuous ⊂ α-Hölder continuous ⊂ uniformly continuous ⊂ continuous, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gibbs Phenomenon
In mathematics, the Gibbs phenomenon, discovered by Available on-line at:National Chiao Tung University: Open Course Ware: Hewitt & Hewitt, 1979. and rediscovered by , is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The function's Nth partial Fourier series (formed by summing its N lowest constituent sinusoids) produces large peaks around the jump which overshoot and undershoot the function's actual values. This approximation error approaches a limit of about 9% of the jump as more sinusoids are used, though the infinite Fourier series sum does eventually converge almost everywhere except the point of discontinuity. The Gibbs phenomenon was observed by experimental physicists, but was believed to be due to imperfections in the measuring apparatus, and it is one cause of ringing artifacts in signal processing. Description The Gibbs phenomenon involves both the fact that Fourier su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]