Controlled NOT Gate
   HOME
*





Controlled NOT Gate
In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-''X'' gate'','' controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986. The CNOT can be expressed in the Pauli basis as: : \mbox = e^= e^. Being both unitary and Hermitian, CNOT has the property e^=(\cos \theta)I+(i\sin \theta) U and U =e^=e^, and is involutory. The CNOT gate can be further decomposed as products of rotation operator gates and exactly one two qubit interaction gate, for example : \mbox =e^R_(-\pi/2)R_(-\pi/2)R_(-\pi/2)R_(\pi/2)R_(\pi/2). In general, any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Register
In quantum computing, a quantum register is a system comprising multiple qubits. It is the quantum analogue of the classical processor register. Quantum computers perform calculations by manipulating qubits within a quantum register. Definition It is usually assumed that the register consists of qubits. It is also generally assumed that registers are not density matrices, but that they are pure, although the definition of "register" can be extended to density matrices. An n size quantum register is a quantum system comprising n pure qubits. The Hilbert space, \mathcal, in which the data is stored in a quantum register is given by \mathcal = \mathcal\otimes\mathcal\otimes\ldots\otimes\mathcal where \otimes is the tensor product. The number of dimensions of the Hilbert spaces depend on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces (\mathbb^2), while qutrits are 3-dimensional complex spaces (\mathbb^3), et.c. For a register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superdense Coding
In quantum information theory, superdense coding (also referred to as ''dense coding'') is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender and receiver pre-sharing an entangled resource. In its simplest form, the protocol involves two parties, often referred to as Alice and Bob in this context, which share a pair of maximally entangled qubits, and allows Alice to transmit two bits (''i.e.'', one of 00, 01, 10 or 11) to Bob by sending only one qubit. This protocol was first proposed by Charles H. Bennett and Stephen Wiesner in 1970Stephen Wiesner
Memorial blog post by Or Sattath, with scan of Bennett's handwritten notes from 1970. See als

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Logic Gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates. For example, the reversible Toffoli gate can implement all Boolean functions, often at the cost of having to use ancilla bits. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. Quantum gates are unitary operators, and are described as unitary matrices relative to some basis. Usually we use the ''computational basis'', which unless we compare it with something, just means that for a ''d''-level quantum system (such as a qubit, a quantum register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadamard Transform
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m'' re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Change Of Basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are considered, the coordinate vector that represents a vector on one basis is, in general, different from the coordinate vector that represents on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of coordinates relative to the other basis. Such a conversion results from the ''change-of-basis formula'' which expresses the coordinates relative to one basis in terms of coordinates relative to the other basis. Using matrices, this formula can be written :\mathbf x_\mathrm = A \,\mathbf x_\mathrm, where "old" and "new" refer respectively to the firstly defined basis and the other basis, \mathbf x_\mathrm and \mathbf x_\mathrm are the colu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadamard Gate
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m'' re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CNOT Hadamard Basis
In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-''X'' gate'','' controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986. The CNOT can be expressed in the Pauli basis as: : \mbox = e^= e^. Being both unitary and Hermitian, CNOT has the property e^=(\cos \theta)I+(i\sin \theta) U and U =e^=e^, and is involutory. The CNOT gate can be further decomposed as products of rotation operator gates and exactly one two qubit interaction gate, for example : \mbox =e^R_(-\pi/2)R_(-\pi/2)R_(-\pi/2)R_(\pi/2)R_(\pi/2). In general, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deutsch–Jozsa Algorithm
The Deutsch–Jozsa algorithm is a deterministic quantum algorithm proposed by David Deutsch and Richard Jozsa in 1992 with improvements by Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca in 1998. Although of little current practical use, it is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. The Deutsch–Jozsa problem is specifically designed to be easy for a quantum algorithm and hard for any deterministic classical algorithm. It is a black box problem that can be solved efficiently by a quantum computer with no error, whereas a deterministic classical computer would need a exponential number of queries to the black box to solve the problem. More formally, it yields an oracle relative to which EQP, the class of problems that can be solved exactly in polynomial time on a quantum computer, and P are different. Since the problem is easy to solve on a probabilistic classic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ion Trap
An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials (up to several electronvolts) that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields. Penning traps can be used for precise magnetic measurements in spectroscopy. Studies of quantum state man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beryllium
Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form minerals. Notable gemstones high in beryllium include beryl ( aquamarine, emerald) and chrysoberyl. It is a relatively rare element in the universe, usually occurring as a product of the spallation of larger atomic nuclei that have collided with cosmic rays. Within the cores of stars, beryllium is depleted as it is fused into heavier elements. Beryllium constitutes about 0.0004 percent by mass of Earth's crust. The world's annual beryllium production of 220 tons is usually manufactured by extraction from the mineral beryl, a difficult process because beryllium bonds strongly to oxygen. In structural applications, the combination of high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]