Constructible Sheaf
   HOME
*





Constructible Sheaf
In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space ''X'', such that ''X'' is the union of a finite number of locally closed subsets on each of which the sheaf is a locally constant sheaf. It has its origins in algebraic geometry, where in étale cohomology constructible sheaves are defined in a similar way . For the derived category of constructible sheaves, see a section in ℓ-adic sheaf. The finiteness theorem in étale cohomology states that the higher direct images of a constructible sheaf are constructible. Definition of étale constructible sheaves on a scheme ''X'' Here we use the definition of constructible étale sheaves from the book by Freitag and Kiehl referenced below. In what follows in this subsection, all sheaves \mathcal on schemes X are étale sheaves unless otherwise noted. A sheaf \mathcal is called constructible if X can be written as a finite union of locally closed subschemes i_Y:Y \to X such that for each subsche ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locally Closed Subset
In topology, a branch of mathematics, a subset E of a topological space X is said to be locally closed if any of the following equivalent conditions are satisfied: * E is the intersection of an open set and a closed set in X. * For each point x\in E, there is a neighborhood U of x such that E \cap U is closed in U. * E is an open subset of its closure \overline. * The set \overline\setminus E is closed in X. * E is the difference of two closed sets in X. * E is the difference of two open sets in X. The second condition justifies the terminology ''locally closed'' and is Bourbaki's definition of locally closed. To see the second condition implies the third, use the facts that for subsets A \subseteq B, A is closed in B if and only if A = \overline \cap B and that for a subset E and an open subset U, \overline \cap U = \overline \cap U. Examples The interval (0, 1] = (0, 2) \cap , 1/math> is a locally closed subset of \Reals. For another example, consider the relative interior D of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Cohomology
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type. History Étale cohomology was introduced by , using some suggestions by Jean-Pierre Serre, and was motivated by the attempt to construct a Weil cohomology theory in order to prove the Weil conjectures. The foundations were soon after worked out by Grothendieck together with Michael Artin, and published as and SGA 4. Grothendieck used étale cohomology to prove some of the Weil conjectures (Bernard Dwork had already managed to prove the rationality part of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


â„“-adic Sheaf
In algebraic geometry, an ℓ-adic sheaf on a Noetherian scheme ''X'' is an inverse system consisting of \mathbb/\ell^n-modules F_n in the étale topology and F_ \to F_n inducing F_ \otimes_ \mathbb/\ell^n \overset\to F_n.. Bhatt–Scholze's pro-étale topology gives an alternative approach. Constructible and lisse ℓ-adic sheaves An ℓ-adic sheaf \_ is said to be * ''constructible'' if each F_n is constructible. * ''lisse'' if each F_n is constructible and locally constant. Some authors (e.g., those of SGA 4½) assume an ℓ-adic sheaf to be constructible. Given a connected scheme ''X'' with a geometric point ''x'', SGA 1 defines the étale fundamental group \pi^_1(X, x) of ''X'' at ''x'' to be the group classifying Galois coverings of ''X''. Then the category of lisse ℓ-adic sheaves on ''X'' is equivalent to the category of continuous representations of \pi^_1(X, x) on finite free \mathbb_l-modules. This is an analog of the correspondence between local systems and contin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finiteness Theorem For A Proper Morphism
In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves: :g^*(R^r f_* \mathcal) \to R^r f'_*(g'^*\mathcal) where :\begin X' & \stackrel\to & X \\ f' \downarrow & & \downarrow f \\ S' & \stackrel g \to & S \end is a Cartesian square of topological spaces and \mathcal is a sheaf on ''X''. Such theorems exist in different branches of geometry: for (essentially arbitrary) topological spaces and proper maps ''f'', in algebraic geometry for (quasi-)coherent sheaves and ''f'' proper or ''g'' flat, similarly in analytic geometry, but also for étale sheaves for ''f'' proper or ''g'' smooth. Introduction A simple base change phenomenon arises in commutative algebra when ''A'' is a commutative ring and ''B'' and ''A' ''are two ''A''-algebras. Let B' = B \otimes_A A'. In this situation, given a ''B''-module ''M'', there is an isomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intersection Cohomology
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to ''L''2 cohomology. Goresky–MacPherson approach The homology groups of a compact, oriented, connected, ''n''-dimensional manifold ''X'' have a fundamental property called Poincaré duality: there is a perfect pairing : H_i(X,\Q) \times H_(X,\Q) \to H_0(X,\Q) \cong \Q. Classically—going back, for instance, to Henri Poincaré—this duality was understood in terms of intersection theory. An element of :H_j(X) is represented by a ''j''-dimensional cycle. If an ''i''-dimensional and an (n-i)-dimensional cycle are in general position, then their intersection is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local System
In mathematics, a local system (or a system of local coefficients) on a topological space ''X'' is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group ''A'', and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. Definition Let ''X'' be a topological space. A local system (of abelian groups/modules/...) on ''X'' is a locally constant sheaf (of abelian groups/modules...) on ''X''. In other words, a sheaf \mathcal is a local system if every point has an open neighborhood U such that the restricted sheaf \mathcal, _U is isomorphic to the sheafification of some constant presheaf. Equivalent definitions Path-connected spaces If ''X'' is path-connected, a local system \mathcal of abelian groups has the same stalk ''L'' at eve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]