HOME
*





Compute Kernel
In computing, a compute kernel is a routine compiled for high throughput accelerators (such as graphics processing units (GPUs), digital signal processors (DSPs) or field-programmable gate arrays (FPGAs)), separate from but used by a main program (typically running on a central processing unit). They are sometimes called compute shaders, sharing execution units with vertex shaders and pixel shaders on GPUs, but are not limited to execution on one class of device, or graphics APIs. Description Compute kernels roughly correspond to inner loops when implementing algorithms in traditional languages (except there is no implied sequential operation), or to code passed to internal iterators. They may be specified by a separate programming language such as " OpenCL C" (managed by the OpenCL API), as "compute shaders" written in a shading language (managed by a graphics API such as OpenGL), or embedded directly in application code written in a high level language, as in the cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology and software engineering. The term "computing" is also synonymous with counting and calculating. In earlier times, it was used in reference to the action performed by mechanical computing machines, and before that, to human computers. History The history of computing is longer than the history of computing hardware and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. Computing is intimately tied to the representation of numbers, though mathematical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OpenGL
OpenGL (Open Graphics Library) is a cross-language, cross-platform application programming interface (API) for rendering 2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit (GPU), to achieve hardware-accelerated rendering. Silicon Graphics, Inc. (SGI) began developing OpenGL in 1991 and released it on June 30, 1992; applications use it extensively in the fields of computer-aided design (CAD), virtual reality, scientific visualization, information visualization, flight simulation, and video games. Since 2006, OpenGL has been managed by the non-profit technology consortium Khronos Group. Design The OpenGL specification describes an abstract API for drawing 2D and 3D graphics. Although it is possible for the API to be implemented entirely in software, it is designed to be implemented mostly or entirely in hardware. The API is defined as a set of functions which may be called by the client program, alongside a set of named in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intermediate Representation
An intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be ''accurate'' – capable of representing the source code without loss of information – and ''independent'' of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program. In the latter case it is also called an ''intermediate language''. A canonical example is found in most modern compilers. For example, the CPython interpreter transforms the linear human-readable text representing a program into an intermediate graph structure that allows flow analysis and re-arrangement before execution. Use of an intermediate representation such as this allows compiler systems like the GNU Compiler Collection and LLVM to be us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shader (computer Graphics)
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color (hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SPIR-V
Standard Portable Intermediate Representation (SPIR) is an intermediate language for parallel compute and graphics by Khronos Group. It is used in multiple execution environments, including the Vulkan graphics API and the OpenCL compute API, to represent a shader or kernel. It is also used as an interchange language for cross compilation. SPIR-V was introduced in 2015 by the Khronos Group, and has since replaced the original SPIR, which was introduced in 2012. Purpose The purposes of SPIR-V are to natively represent the primitives needed by compute and graphics; to separate high-level language from the interface to compute and graphics drivers; to be the distribution form, or distribute fully compiled binaries; to be a fully self-contained specification; and to support multiple APIs. It is also used as an intermediate target for cross-compilation tools. For example, SPIR-V allows the Vulkan API to use any shading language, including GLSL and HLSL. SPIR-V can be compiled into se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vulkan (API)
Vulkan is a low- overhead, cross-platform API, open standard for 3D graphics and computing. Vulkan targets high-performance real-time 3D graphics applications, such as video games and interactive media. Vulkan is intended to offer higher performance and more efficient CPU and GPU usage compared to older OpenGL and Direct3D 11 APIs. It provides a considerably lower-level API for the application than the older APIs, making Vulkan comparable to Apple's Metal API and Microsoft's Direct3D 12. In addition to its lower CPU usage, Vulkan is designed to allow developers to better distribute work among multiple CPU cores. Vulkan was first announced by the non-profit Khronos Group at GDC 2015. The Vulkan API was initially referred to as the "next generation OpenGL initiative", or "OpenGL next" by Khronos, but use of those names was discontinued when Vulkan was announced. Vulkan is derived from and built upon components of AMD's Mantle API, which was donated by AMD to Khronos wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scatter Gather (vector Addressing)
Gather/scatter is a type of memory addressing that at once collects (gathers) from, or stores (scatters) data to, multiple, arbitrary indices. Examples of its use include sparse linear algebra operations, sorting algorithms, fast Fourier transforms, and some computational graph theory problems. It is the vector equivalent of register indirect addressing, with gather involving indexed reads, and scatter, indexed writes. Vector processors (and some SIMD units in CPUs) have hardware support for gather and scatter operations. Definitions Gather A sparsely populated vector y holding N non-empty elements can be represented by two densely populated vectors of length N; x containing the non-empty elements of y, and idx giving the index in y where x's element is located. The gather of y into x, denoted x \leftarrow y, _x, assigns x(i)=y(idx(i)) with idx having already been calculated. Assuming no pointer aliasing between x[], y[],idx[], a C (programming language), C implementation is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronization (computer Science)
In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. ''Process synchronization'' refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. '' Data synchronization'' refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization. The need for synchronization The need for synchronization does not arise merely in multi-processor systems but for any kind of concurrent processes; even in single processor systems. Mentioned below are some of the main needs for synchronization: '' Forks and Joins:'' When a job arrives at a fork point, it is split into N sub-jobs which are then serviced by n tasks. After being serviced, each sub-job waits until ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Operations
In concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of invocation and response events ( event), that may be extended by adding response events such that: # The extended list can be re-expressed as a sequential history (is serializable). # That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return. In a concurrent system, processes can access a shared object at the same time. Because multiple processes are accessing a single object, there may arise a situation in which while one process is accessing the object, another process changes its contents. Making a system linearizable is one solution to this problem. In a linearizable system, although operations overlap on a shared object, each operation appears to take place ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Parallel
Data parallelism is parallelization across multiple processors in parallel computing environments. It focuses on distributing the data across different nodes, which operate on the data in parallel. It can be applied on regular data structures like arrays and matrices by working on each element in parallel. It contrasts to task parallelism as another form of parallelism. A data parallel job on an array of ''n'' elements can be divided equally among all the processors. Let us assume we want to sum all the elements of the given array and the time for a single addition operation is Ta time units. In the case of sequential execution, the time taken by the process will be ''n''×Ta time units as it sums up all the elements of an array. On the other hand, if we execute this job as a data parallel job on 4 processors the time taken would reduce to (''n''/4)×Ta + merging overhead time units. Parallel execution results in a speedup of 4 over sequential execution. One important thing to not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Processor
In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called ''vectors''. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional single instruction, multiple data (SIMD) or SWAR Arithmetic Units. Vector processors can greatly improve performance on certain workloads, notably numerical simulation and similar tasks. Vector processing techniques also operate in video-game console hardware and in graphics accelerators. Vector machines appeared in the early 1970s and dominated supercomputer design through the 1970s into the 1990s, notably the various Cray platforms. The rapid fall in the price-to-performance ratio of conventional microprocessor designs led to a decline in vector superc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Programming Paradigm
Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code. Yet others are concerned mainly with the style of syntax and grammar. Common programming paradigms include: * imperative in which the programmer instructs the machine how to change its state, ** procedural which groups instructions into procedures, ** object-oriented which groups instructions with the part of the state they operate on, * declarative in which the programmer merely declares properties of the desired result, but not how to compute it ** functional in which the des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]