HOME
*



picture info

Complex Logarithm
In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: * A complex logarithm of a nonzero complex number z, defined to be any complex number w for which e^w = z.Ahlfors, Section 3.4.Sarason, Section IV.9. Such a number w is denoted by \log z. If z is given in polar form as z = re^, where r and \theta are real numbers with r>0, then \ln r + i \theta is one logarithm of z, and all the complex logarithms of z are exactly the numbers of the form \ln r + i\left(\theta + 2\pi k\right) for integers ''k''. These logarithms are equally spaced along a vertical line in the complex plane. * A complex-valued function \log \colon U \to \mathbb, defined on some subset U of the set \mathbb^* of nonzero complex numbers, satisfying e^ = z for all z in U. Such complex logarithm functions are analogous to the real logarithm function \ln \colon \mathbb_ \to \mathbb, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Log Domain
Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each other * Complex (psychology), a core pattern of emotions etc. in the personal unconscious organized around a common theme such as power or status Complex may also refer to: Arts, entertainment and media * Complex (English band), formed in 1968, and their 1971 album ''Complex'' * Complex (band), a Japanese rock band * ''Complex'' (album), by Montaigne, 2019, and its title track * ''Complex'' (EP), by Rifle Sport, 1985 * "Complex" (song), by Gary Numan, 1979 * Complex Networks, publisher of magazine ''Complex'', now online Biology * Protein–ligand complex, a complex of a protein bound with a ligand * Exosome complex, a multi-protein intracellular complex * Protein complex, a group of two or more associated polypeptide chains * Sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as because it is a one-dimensional unit -sphere. If is a point on the unit circle's circumference, then and are the lengths of the legs of a right triangle whose hypotenuse has length 1. Thus, by the Pythagorean theorem, and satisfy the equation x^2 + y^2 = 1. Since for all , and since the reflection of any point on the unit circle about the - or -axis is also on the unit circle, the above equation holds for all points on the unit circle, not only those in the first quadrant. The interior of the unit circle is called the open unit disk, while the interior of the unit circle combined with the unit circle itself is called the closed unit disk. One may also use other notions of "dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atan2
In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, \theta = \operatorname(y, x) is the angle measure (in radians, with -\pi < \theta \leq \pi) between the positive x-axis and the from the to the point (x,\,y) in the . Equivalently, \operatorname(y, x) is the

picture info

Interval (mathematics)
In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other examples of intervals are the set of numbers such that , the set of all real numbers \R, the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element). Real intervals play an important role in the theory of integration, because they are the simplest sets whose "length" (or "measure" or "size") is easy to define. The concept of measure can then be extended to more complicated sets of real numbers, leading to the Borel measure and eventually to the Lebesgue measure. Intervals are central to interval arithmetic, a general numerical computing technique that automatically provides guaranteed enclosures for arbitrary formulas, even in the presence of uncertainties, mathematical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Argument (complex Analysis)
In mathematics (particularly in complex analysis), the argument of a complex number ''z'', denoted arg(''z''), is the angle between the positive real axis and the line joining the origin and ''z'', represented as a point in the complex plane, shown as \varphi in Figure 1. It is a multi-valued function operating on the nonzero complex numbers. To define a single-valued function, the principal value of the argument (sometimes denoted Arg ''z'') is used. It is often chosen to be the unique value of the argument that lies within the interval . Definition An argument of the complex number , denoted , is defined in two equivalent ways: #Geometrically, in the complex plane, as the 2D polar angle \varphi from the positive real axis to the vector representing . The numeric value is given by the angle in radians, and is positive if measured counterclockwise. #Algebraically, as any real quantity \varphi such that z = r (\cos \varphi + i \sin \varphi) = r e^ for some positive r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Up To
Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, ''x'' is unique up to ''R'' means that all objects ''x'' under consideration are in the same equivalence class with respect to the relation ''R''. Moreover, the equivalence relation ''R'' is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation ''R'' that relates two lists if one can be obtained by reordering (permutation) from the other. As another example, the sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Argument (complex Analysis)
In mathematics (particularly in complex analysis), the argument of a complex number ''z'', denoted arg(''z''), is the angle between the positive real axis and the line joining the origin and ''z'', represented as a point in the complex plane, shown as \varphi in Figure 1. It is a multi-valued function operating on the nonzero complex numbers. To define a single-valued function, the principal value of the argument (sometimes denoted Arg ''z'') is used. It is often chosen to be the unique value of the argument that lies within the interval . Definition An argument of the complex number , denoted , is defined in two equivalent ways: #Geometrically, in the complex plane, as the 2D polar angle \varphi from the positive real axis to the vector representing . The numeric value is given by the angle in radians, and is positive if measured counterclockwise. #Algebraically, as any real quantity \varphi such that z = r (\cos \varphi + i \sin \varphi) = r e^ for some positive r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, June 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covering Space
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete space D and for every x \in X an open neighborhood U \subset X, such that \pi^(U)= \displaystyle \bigsqcup_ V_d and \pi, _:V_d \rightarrow U is a homeomorphism for every d \in D . Often, the notion of a covering is used for the covering space E as well as for the map \pi : E \rightarrow X. The open sets V_ are called sheets, which are uniquely determined up to a homeomorphism if U is connected. For each x \in X the discrete subset \pi^(x) is called the fiber of x. The degree of a covering is the cardinality of the space D. If E is path-connected, then the covering \pi : E \rightarrow X is denoted as a path-connected covering. Examples * For every topological space X there exists the covering \pi:X \rightarrow X with \pi(x)=x, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]