Complex Poisson Manifold
   HOME
*





Complex Poisson Manifold
In differential geometry, a Poisson structure on a smooth manifold M is a Lie bracket \ (called a Poisson bracket in this special case) on the algebra (M) of smooth functions on M , subject to the Leibniz rule : \ = \h + g \ . Equivalently, \ defines a Lie algebra structure on the vector space (M) of smooth functions on M such that X_:= \: (M) \to (M) is a vector field for each smooth function f (making (M) into a Poisson algebra). Poisson structures on manifolds were introduced by André Lichnerowicz in 1977. They were further studied in the classical paper of Alan Weinstein, where many basic structure theorems were first proved, and which exerted a huge influence on the development of Poisson geometry — which today is deeply entangled with non-commutative geometry, integrable systems, topological field theories and representation theory, to name a few. Poisson structures are named after the French mathematician Siméon Denis Poisson, due to their earl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Foliation
In mathematics (differential geometry), a foliation is an equivalence relation on an ''n''-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the decomposition of the real coordinate space R''n'' into the cosets ''x'' + R''p'' of the standardly embedded subspace R''p''. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable (of class ''Cr''), or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class ''Cr'' it is usually understood that ''r'' ≥ 1 (otherwise, ''C''0 is a topological foliation). The number ''p'' (the dimension of the leaves) is called the dimension of the foliation and is called its codimension. In some papers on general relativity by mathematical physicists, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Courant Bracket
In a field of mathematics known as differential geometry, the Courant bracket is a generalization of the Lie bracket from an operation on the tangent bundle to an operation on the direct sum of the tangent bundle and the vector bundle of ''p''-forms. The case ''p'' = 1 was introduced by Theodore James Courant in his 1990 doctoral dissertation as a structure that bridges Poisson geometry and pre-symplectic geometry, based on work with his advisor Alan Weinstein. The twisted version of the Courant bracket was introduced in 2001 by Pavol Severa, and studied in collaboration with Weinstein. Today a complex version of the ''p''=1 Courant bracket plays a central role in the field of generalized complex geometry, introduced by Nigel Hitchin in 2002. Closure under the Courant bracket is the integrability condition of a generalized almost complex structure. Definition Let ''X'' and ''Y'' be vector fields on an N-dimensional real manifold ''M'' and let ''ξ'' and ''η'' be ''p''-for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schouten–Nijenhuis Bracket
In differential geometry, the Schouten–Nijenhuis bracket, also known as the Schouten bracket, is a type of graded Lie bracket defined on multivector fields on a smooth manifold extending the Lie bracket of vector fields. There are two different versions, both rather confusingly called by the same name. The most common version is defined on alternating multivector fields and makes them into a Gerstenhaber algebra, but there is also another version defined on symmetric multivector fields, which is more or less the same as the Poisson bracket on the cotangent bundle. It was invented by Jan Arnoldus Schouten (1940, 1953) and its properties were investigated by his student Albert Nijenhuis (1955). It is related to but not the same as the Nijenhuis–Richardson bracket and the Frölicher–Nijenhuis bracket. Definition and properties An alternating multivector field is a section of the exterior algebra ∧∗T''M'' over the tangent bundle of a manifold ''M''. The alternating multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multivector
In multilinear algebra, a multivector, sometimes called Clifford number, is an element of the exterior algebra of a vector space . This algebra is graded, associative and alternating, and consists of linear combinations of simple -vectors (also known as decomposable -vectors or -blades) of the form : v_1\wedge\cdots\wedge v_k, where v_1, \ldots, v_k are in . A -vector is such a linear combination that is ''homogeneous'' of degree (all terms are -blades for the same ). Depending on the authors, a "multivector" may be either a -vector or any element of the exterior algebra (any linear combination of -blades with potentially differing values of ). In differential geometry, a -vector is a vector in the exterior algebra of the tangent vector space; that is, it is an antisymmetric tensor obtained by taking linear combinations of the exterior product of tangent vectors, for some integer . A differential -form is a -vector in the exterior algebra of the dual of the tangent spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian Vector Field
In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics. Hamiltonian vector fields can be defined more generally on an arbitrary Poisson manifold. The Lie bracket of two Hamiltonian vector fields corresponding to functions ''f'' and ''g'' on the manifold is itself a Hamiltonian vector field, with the Hamiltonian given by the Poisson bracket of ''f'' and ''g''. Definition Suppose that is a symplectic ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derivation (differential Algebra)
In mathematics, a derivation is a function on an algebra over a field, algebra which generalizes certain features of the derivative operator. Specifically, given an algebra ''A'' over a ring (mathematics), ring or a field (mathematics), field ''K'', a ''K''-derivation is a ''K''-linear map that satisfies Product rule, Leibniz's law: : D(ab) = a D(b) + D(a) b. More generally, if ''M'' is an ''A''-bimodule, a ''K''-linear map that satisfies the Leibniz law is also called a derivation. The collection of all ''K''-derivations of ''A'' to itself is denoted by Der''K''(''A''). The collection of ''K''-derivations of ''A'' into an ''A''-module ''M'' is denoted by . Derivations occur in many different contexts in diverse areas of mathematics. The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R''n''. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Leibniz Rule
In calculus, the general Leibniz rule, named after Gottfried Wilhelm Leibniz, generalizes the product rule (which is also known as "Leibniz's rule"). It states that if f and g are n-times differentiable functions, then the product fg is also n-times differentiable and its nth derivative is given by :(fg)^=\sum_^n f^ g^, where = is the binomial coefficient and f^ denotes the ''j''th derivative of ''f'' (and in particular f^= f). The rule can be proved by using the product rule and mathematical induction. Second derivative If, for example, , the rule gives an expression for the second derivative of a product of two functions: :(fg)''(x)=\sum\limits_^=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x). More than two factors The formula can be generalized to the product of ''m'' differentiable functions ''f''1,...,''f''''m''. :\left(f_1 f_2 \cdots f_m\right)^=\sum_ \prod_f_^\,, where the sum extends over all ''m''-tuples (''k''1,...,''k''''m'') of non-negative integers with \sum_^m k_t=n, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jacobi Identity
In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product a\times b and the Lie bracket operation ,b/math> both satisfy the Jacobi identity. In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets. In quantum mechanics, it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket. Definition Let + and \times be two binary operations, and let 0 be the neutral element for +. The is :x \times (y \times z) \ +\ y \times (z \times x) \ +\ z \times (x \times y)\ =\ 0. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skew Symmetry
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition In terms of the entries of the matrix, if a_ denotes the entry in the i-th row and j-th column, then the skew-symmetric condition is equivalent to Example The matrix :A = \begin 0 & 2 & -45 \\ -2 & 0 & -4 \\ 45 & 4 & 0 \end is skew-symmetric because : -A = \begin 0 & -2 & 45 \\ 2 & 0 & 4 \\ -45 & -4 & 0 \end = A^\textsf . Properties Throughout, we assume that all matrix entries belong to a field (mathematics), field \mathbb whose characteristic (algebra), characteristic is not equal to 2. That is, we assume that , where 1 denotes the multiplicative identity and 0 the additive identity of the given field. If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. * The sum of two skew-s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]