Complementary Event
   HOME
*





Complementary Event
In probability theory, the complement of any event ''A'' is the event ot ''A'' i.e. the event that ''A'' does not occur.Robert R. Johnson, Patricia J. Kuby: ''Elementary Statistics''. Cengage Learning 2007, , p. 229 () The event ''A'' and its complement ot ''A''are mutually exclusive and exhaustive. Generally, there is only one event ''B'' such that ''A'' and ''B'' are both mutually exclusive and exhaustive; that event is the complement of ''A''. The complement of an event ''A'' is usually denoted as ''A′'', ''Ac'', \neg''A'' or '. Given an event, the event and its complementary event define a Bernoulli trial: did the event occur or not? For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails." Because these two outcomes are mutually exclusive (i.e. the coin cannot simultaneously show both heads and tails) and collectively exhaustive (i.e. there are no other possible outcomes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Event (probability Theory)
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. An event consisting of only a single outcome is called an or an ; that is, it is a singleton set. An event S is said to if S contains the outcome x of the experiment (or trial) (that is, if x \in S). The probability (with respect to some probability measure) that an event S occurs is the probability that S contains the outcome x of an experiment (that is, it is the probability that x \in S). An event defines a complementary event, namely the complementary set (the event occurring), and together these define a Bernoulli trial: did the event occur or not? Typically, when the sample space is finite, any subset of the sample space is an event (that is, all e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mutually Exclusive
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both. In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6). Logic In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same time. To say that more than two propositions are mutually exclusive, depending on the context, means that one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collectively Exhaustive Events
In probability theory and logic, a set of events is jointly or collectively exhaustive if at least one of the events must occur. For example, when rolling a six-sided die, the events 1, 2, 3, 4, 5, and 6 balls of a single outcome are collectively exhaustive, because they encompass the entire range of possible outcomes. Another way to describe collectively exhaustive events is that their union must cover all the events within the entire sample space. For example, events A and B are said to be collectively exhaustive if :A \cup B = S where S is the sample space. Compare this to the concept of a set of mutually exclusive events. In such a set no more than one event can occur at a given time. (In some forms of mutual exclusion only one event can ever occur.) The set of all possible die rolls is both mutually exclusive and collectively exhaustive (i.e., " MECE"). The events 1 and 6 are mutually exclusive but not collectively exhaustive. The events "even" (2,4 or 6) and "not-6" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Trial
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his ''Ars Conjectandi'' (1713). The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process. This article offers an elementary introduction to the concept, whereas the article on the Bernoulli process offers a more advanced treatment. Since a Bernoulli trial has only two possible outcomes, it can be framed as some "yes or no" question. For example: *Is the top card of a shuffled deck an ace? *Was the newborn child a girl? (See human sex ratio.) Therefore, success and failure are merely labels for the two outcomes, and should not be construed literally. The term "success" in this sense consists in the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outcome (probability)
In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible ''outcomes'' that make up our ''sample space'' are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails". Outcomes should not be confused with ''events'', which are (or informally, "groups") of outcomes. For comparison, we could define an event to occur when "at least one 'heads'" is flipped in the experiment - that is, when the outcome contains at least one 'heads'. This event would contain all outcomes in the sample space except the element (T, T). Sets of outcomes: events Since individual outcomes may be of little practical interest, or becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Experiment (probability Theory)
In probability theory, an experiment or trial (see below) is any procedure that can be infinitely Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ... repeated and has a well-defined Set (mathematics), set of possible Outcome (probability), outcomes, known as the sample space. An experiment is said to be Randomness, ''random'' if it has more than one possible outcome, and Deterministic system, ''deterministic'' if it has only one. A random experiment that has exactly two (Mutually exclusive events, mutually exclusive) possible outcomes is known as a Bernoulli trial. When an experiment is conducted, one (and only one) outcome results— although this outcome may be included in any number of Event (probability theory), events, all of which would be said to have occurred on that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sample Space
In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, are listed as elements in the set. It is common to refer to a sample space by the labels ''S'', Ω, or ''U'' (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols. They can also be finite, countably infinite, or uncountably infinite. A subset of the sample space is an event, denoted by E. If the outcome of an experiment is included in E, then event E has occurred. For example, if the experiment is tossing a single coin, the sample space is the set \, where the outcome H means that the coin is heads and the outcome T means that the coin is tails. The possible events are E=\, E = \, and E = \. For tossing two coins, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unity (mathematics)
1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by  2, although by other definitions 1 is the second natural number, following  0. The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; this was not universally accepted until the mid-20th century. Additionally, 1 is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mutually Exclusive Events
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both. In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6). Logic In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same time. To say that more than two propositions are mutually exclusive, depending on the context, means that one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principle Of Inclusion-exclusion
A principle is a proposition or value that is a guide for behavior or evaluation. In law, it is a rule that has to be or usually is to be followed. It can be desirably followed, or it can be an inevitable consequence of something, such as the laws observed in nature or the way that a system is constructed. The principles of such a system are understood by its users as the essential characteristics of the system, or reflecting system's designed purpose, and the effective operation or use of which would be impossible if any one of the principles was to be ignored. A system may be explicitly based on and implemented from a document of principles as was done in IBM's 360/370 ''Principles of Operation''. Examples of principles are, entropy in a number of fields, least action in physics, those in descriptive comprehensive and fundamental law: doctrines or assumptions forming normative rules of conduct, separation of church and state in statecraft, the central dogma of molecular biology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false, and a value of ''false'' when its operand is true. Thus if statement is true, then \neg P (pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]