Compiler Correctness
   HOME
*





Compiler Correctness
In computing, compiler correctness is the branch of computer science that deals with trying to show that a compiler behaves according to its language specification. Techniques include developing the compiler using formal methods and using rigorous testing (often called compiler validation) on an existing compiler. Formal verification Two main formal verification approaches for establishing correctness of compilation are proving correctness of the compiler for all inputs and proving correctness of a compilation of a particular program (translation validation). Compiler correctness for all input programs Compiler validation with formal methods involves a long chain of formal, deductive logic. However, since the tool to find the proof ( theorem prover) is implemented in software and is complex, there is a high probability it will contain errors. One approach has been to use a tool that verifies the proof (a proof checker) which, because it is much simpler than a proof-finder, is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology and software engineering. The term "computing" is also synonymous with counting and calculating. In earlier times, it was used in reference to the action performed by mechanical computing machines, and before that, to human computers. History The history of computing is longer than the history of computing hardware and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. Computing is intimately tied to the representation of numbers, though mathematical conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflections On Trusting Trust
Kenneth Lane Thompson (born February 4, 1943) is an American pioneer of computer science. Thompson worked at Bell Labs for most of his career where he designed and implemented the original Unix operating system. He also invented the B programming language, the direct predecessor to the C programming language, and was one of the creators and early developers of the Plan 9 operating system. Since 2006, Thompson has worked at Google, where he co-developed the Go programming language. Other notable contributions included his work on regular expressions and early computer text editors QED and ed, the definition of the UTF-8 encoding, and his work on computer chess that included the creation of endgame tablebases and the chess machine Belle. He won the Turing Award in 1983 with his long-term colleague Dennis Ritchie. Early life and education Thompson was born in New Orleans, Louisiana. When asked how he learned to program, Thompson stated, "I was always fascinated with logic and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correctness (computer Science)
In theoretical computer science, an algorithm is correct with respect to a specification if it behaves as specified. Best explored is ''functional'' correctness, which refers to the input-output behavior of the algorithm (i.e., for each input it produces an output satisfying the specification). Within the latter notion, ''partial correctness'', requiring that ''if'' an answer is returned it will be correct, is distinguished from ''total correctness'', which additionally requires that an answer ''is'' eventually returned, i.e. the algorithm terminates. Correspondingly, to prove a program's total correctness, it is sufficient to prove its partial correctness, and its termination. The latter kind of proof (termination proof) can never be fully automated, since the halting problem is undecidable. For example, successively searching through integers 1, 2, 3, … to see if we can find an example of some phenomenon—say an odd perfect number—it is quite easy to write a par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Verification And Validation (software)
Verify or verification may refer to: General * Verification and validation, in engineering or quality management systems, is the act of reviewing, inspecting or testing, in order to establish and document that a product, service or system meets regulatory or technical standards ** Verification (spaceflight), in the space systems engineering area, covers the processes of qualification and acceptance * Verification theory, philosophical theory relating the meaning of a statement to how it is verified * Third-party verification, use of an independent organization to verify the identity of a customer * Authentication, confirming the truth of an attribute claimed by an entity, such as an identity * Forecast verification, verifying prognostic output from a numerical model * Verifiability (science), a scientific principle * Verification (audit), an auditing process Computing * Punched card verification, a data entry step performed after keypunching on a separate, keyboard-equipped ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compiler
In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include, a program that translates from a low-level language to a h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Test Case Reduction
In programming and software development, fuzzing or fuzz testing is an automated software testing technique that involves providing invalid, unexpected, or random data as inputs to a computer program. The program is then monitored for exceptions such as crashes, failing built-in code assertions, or potential memory leaks. Typically, fuzzers are used to test programs that take structured inputs. This structure is specified, e.g., in a file format or protocol and distinguishes valid from invalid input. An effective fuzzer generates semi-valid inputs that are "valid enough" in that they are not directly rejected by the parser, but do create unexpected behaviors deeper in the program and are "invalid enough" to expose corner cases that have not been properly dealt with. For the purpose of security, input that crosses a trust boundary is often the most useful. For example, it is more important to fuzz code that handles the upload of a file by any user than it is to fuzz the code tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fuzzing
In programming and software development, fuzzing or fuzz testing is an automated software testing technique that involves providing invalid, unexpected, or random data as inputs to a computer program. The program is then monitored for exceptions such as crashes, failing built-in code assertions, or potential memory leaks. Typically, fuzzers are used to test programs that take structured inputs. This structure is specified, e.g., in a file format or protocol and distinguishes valid from invalid input. An effective fuzzer generates semi-valid inputs that are "valid enough" in that they are not directly rejected by the parser, but do create unexpected behaviors deeper in the program and are "invalid enough" to expose corner cases that have not been properly dealt with. For the purpose of security, input that crosses a trust boundary is often the most useful. For example, it is more important to fuzz code that handles the upload of a file by any user than it is to fuzz the code tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regression Testing
Regression testing (rarely, ''non-regression testing'') is re-running functional and non-functional tests to ensure that previously developed and tested software still performs as expected after a change. If not, that would be called a '' regression''. Changes that may require regression testing include bug fixes, software enhancements, configuration changes, and even substitution of electronic components. As regression test suites tend to grow with each found defect, test automation is frequently involved. Sometimes a change impact analysis is performed to determine an appropriate subset of tests (''non-regression analysis''). Background As software is updated or changed, or reused on a modified target, emergence of new faults and/or re-emergence of old faults is quite common. Sometimes re-emergence occurs because a fix gets lost through poor revision control practices (or simple human error in revision control). Often, a fix for a problem will be "fragile" in that it fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HOL (proof Assistant)
HOL (Higher Order Logic) denotes a family of Proof assistant, interactive theorem proving systems using similar Higher-order logic, (higher-order) logics and implementation strategies. Systems in this family follow the LCF (theorem prover), LCF approach as they are implemented as a library which defines an abstract data type of proven theorems such that new objects of this type can only be created using the functions in the library which correspond to inference rules in higher-order logic. As long as these functions are correctly implemented, all theorems proven in the system must be valid. As such, a large system can be built on top of a small trusted kernel. Systems in the HOL family use ML (programming language), ML or its successors. ML was originally developed along with LCF as a meta-language for theorem proving systems; in fact, the name stands for "Meta-Language". Underlying logic HOL systems use variants of classical logic, classical higher-order logic, which has simpl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compiler
In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include, a program that translates from a low-level language to a h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Standard ML
Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular among compiler writers and programming language researchers, as well as in the development of theorem provers. Standard ML is a modern dialect of ML, the language used in the Logic for Computable Functions (LCF) theorem-proving project. It is distinctive among widely used languages in that it has a formal specification, given as typing rules and operational semantics in ''The Definition of Standard ML''. Language Standard ML is a functional programming language with some impure features. Programs written in Standard ML consist of expressions as opposed to statements or commands, although some expressions of type unit are only evaluated for their side-effects. Functions Like all functional languages, a key feature of Standard ML is the function, which is used for abstraction. The factorial function can be expressed as follows: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]