Characterizations Of The Category Of Topological Spaces
   HOME
*





Characterizations Of The Category Of Topological Spaces
In the mathematical field of topology, a topological space is usually defined by declaring its open sets. However, this is not necessary, as there are many equivalent axiomatic foundations, each leading to exactly the same concept. For instance, a topological space determines a class of closed sets, of closure and interior operators, and of convergence of various types of objects. Each of these can instead be taken as the primary class of objects, with all of the others (including the class of open sets) directly determined from that new starting point. For example, in Kazimierz Kuratowski's well-known textbook on point-set topology, a topological space is defined as a set together with a certain type of "closure operator," and all other concepts are derived therefrom. Likewise, the neighborhood-based axioms (in the context of Hausdorff spaces) can be retraced to Felix Hausdorff's original definition of a topological space in Grundzüge der Mengenlehre. Many different textbooks use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersection (set Theory)
In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The number 9 is in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convergent Filter
Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such a convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters. Filters have generalizations called (also known as ) and , all of which appear naturally and repeatedly throughout topology. Examples include neighborhood filters/ bases/subbases and uniformities. Every filter is a prefilter and both are filter subbases. Every prefilter and filter subbase is contained in a unique smallest filter, which they are said to . This establishes a relationship between filters and prefilters that may often be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergent Prefilter
Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such a convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters. Filters have generalizations called (also known as ) and , all of which appear naturally and repeatedly throughout topology. Examples include neighborhood filters/ bases/subbases and uniformities. Every filter is a prefilter and both are filter subbases. Every prefilter and filter subbase is contained in a unique smallest filter, which they are said to . This establishes a relationship between filters and prefilters that may often be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prefilter
In mathematics, a filter on a set X is a family \mathcal of subsets such that: # X \in \mathcal and \emptyset \notin \mathcal # if A\in \mathcal and B \in \mathcal, then A\cap B\in \mathcal # If A,B\subset X,A\in \mathcal, and A\subset B, then B\in \mathcal A filter on a set may be thought of as representing a "collection of large subsets". Filters appear in order, model theory, set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal. Filters were introduced by Henri Cartan in 1937 and as described in the article dedicated to filters in topology, they were subsequently used by Nicolas Bourbaki in their book ''Topologie Générale'' as an alternative to the related notion of a net developed in 1922 by E. H. Moore and Herman L. Smith. Order filters are generalizations of filters from sets to arbitrary partially ordered sets. Specifically, a filter on a set is just a proper order filter in the special case where the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lexicographic Order
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements. Another variant, widely used in combinatorics, orders subsets of a given finite set by assigning a total order to the finite set, and converting subsets into increasing sequences, to which the lexicographical order is applied. A generalization defines an order on a Cartesian product of partially ordered sets; this order is a total order if and only if all factors of the Cartesian product are totally ordered. Motivation and definition The words in a lexicon (the set of words used in some language) have a co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergent Net
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space. The motivation for generalizing the notion of a sequence is that, in the context of topology, sequences do not fully encode all information about functions between topological spaces. In particular, the following two conditions are, in general, not equivalent for a map f between topological spaces X and Y: #The map f is continuous in the topological sense; #Given any point x in X, and any sequence in X converging to x, the composition of f with this sequence converges to f(x) (continuous in the sequential sense). While it is necessarily true that condition 1 implies condition 2 (The truth of the condition 1 ensures the truth of the conditions 2.), the reverse implication is not nec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subnet (mathematics)
In topology and related areas of mathematics, a subnet is a generalization of the concept of subsequence to the case of nets. The analogue of "subsequence" for nets is the notion of a "subnet". The definition is not completely straightforward, but is designed to allow as many theorems about subsequences to generalize to nets as possible. There are three non-equivalent definitions of "subnet". The first definition of a subnet was introduced by John L. Kelley in 1955 and later, Stephen Willard introduced his own (non-equivalent) variant of Kelley's definition in 1970. Subnets in the sense of Willard and subnets in the sense of Kelley are the most commonly used definitions of "subnet" but they are each equivalent to the concept of "subordinate filter", which is the analog of "subsequence" for filters (they are not equivalent in the sense that there exist subordinate filters on X = \N whose filter/subordinate–filter relationship cannot be described in terms of the correspondin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kuratowski Closure Axioms
In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator. Definition Kuratowski closure operators and weakenings Let X be an arbitrary set and \wp(X) its power set. A Kuratowski closure operator is a unary operation \mathbf:\wp(X) \to \wp(X) with the following properties: A consequence of \mathbf preserving binary unions is the following condition: In fact if we rewrite the equality in 4'' as an inclusion, giving the weaker axiom 4'''' (''subadditivity''): then it is easy to see that axioms 4''' and 4'''' together are eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Morgan's Laws
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation. The rules can be expressed in English as: * The negation of a disjunction is the conjunction of the negations * The negation of a conjunction is the disjunction of the negations or * The complement of the union of two sets is the same as the intersection of their complements * The complement of the intersection of two sets is the same as the union of their complements or * not (A or B) = (not A) and (not B) * not (A and B) = (not A) or (not B) where "A or B" is an " inclusive or" meaning ''at least'' one of A or B rather than an " exclusive or" that means ''exactly'' one of A or B. In set theory and Boolean algebra, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]