HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the power set (or powerset) of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is
postulated An axiom, postulate, or assumption is a statement (logic), statement that is taken to be truth, true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that whi ...
by the
axiom of power set In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w \ ...
. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''
family of sets In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set fami ...
'' over .


Example

If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is .


Properties

If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset ''A'' of a set ''S'' with the cardinality , ''S'', = ''n'' is a function from ''S'' to the two elements set , denoted as ''IA'': ''S'' → , and it indicates whether an element of ''S'' belongs to ''A'' or not; If ''x'' in ''S'' belongs to ''A'', then ''IA''(''x'') = 1, and 0 otherwise. Each subset ''A'' of ''S'' is identified by or equivalent to the indicator function ''IA'', and as the set of all the functions from ''S'' to consists of all the indicator functions of all the subsets of ''S''. In other words, is equivalent or
bijective In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
to the power set . Since each element in ''S'' corresponds to either 0 or 1 under any function in , the number of all the functions in is 2''n''. Since the number 2 can be defined as (see, for example,
von Neumann ordinals In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
), the is also denoted as . Obviously holds. Generally speaking, ''XY'' is the set of all functions from ''Y'' to ''X'' and .
Cantor's diagonal argument In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a m ...
shows that the power set of a set (whether infinite or not) always has strictly higher cardinality than the set itself (or informally, the power set must be larger than the original set). In particular,
Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be ...
shows that the power set of a countably infinite set is
uncountably In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many Element (mathematics), elements to be countable set, countable. The uncountability of a set is closely related to its cardinal number: a se ...
infinite. The power set of the set of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
s can be put in a
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
with the set of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s (see Cardinality of the continuum). The power set of a set , together with the operations of
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
, intersection and
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
, can be viewed as the prototypical example of a
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ...
. In fact, one can show that any ''finite'' Boolean algebra is isomorphic to the Boolean algebra of the power set of a finite set. For ''infinite'' Boolean algebras, this is no longer true, but every infinite Boolean algebra can be represented as a
subalgebra In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear operat ...
of a power set Boolean algebra (see
Stone's representation theorem In mathematics, Stone's representation theorem for Boolean algebras states that every Boolean algebra is isomorphic to a certain field of sets. The theorem is fundamental to the deeper understanding of Boolean algebra that emerged in the first hal ...
). The power set of a set forms an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
when it is considered with the operation of
symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \. Th ...
(with the empty set as the identity element and each set being its own inverse), and a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
when considered with the operation of intersection. It can hence be shown, by proving the distributive laws, that the power set considered together with both of these operations forms a
Boolean ring In mathematics, a Boolean ring ''R'' is a ring for which ''x''2 = ''x'' for all ''x'' in ''R'', that is, a ring that consists only of idempotent elements. An example is the ring of integers modulo 2. Every Boolean ring gives rise to a Boolean al ...
.


Representing subsets as functions

In
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, is the notation representing the set of all
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s from to . As "2" can be defined as (see, for example,
von Neumann ordinals In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
), (i.e., ) is the set of all
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s from to . As shown above, and the power set of , , is considered identical set-theoretically. This equivalence can be applied to the example above, in which , to get the
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
with the binary representations of numbers from 0 to , with being the number of elements in the set or . First, the enumerated set is defined in which the number in each ordered pair represents the position of the paired element of in a sequence of binary digits such as ; of is located at the first from the right of this sequence and is at the second from the right, and 1 in the sequence means the element of corresponding to the position of it in the sequence exists in the subset of for the sequence while 0 means it does not. For the whole power set of , we get: Such a
bijective mapping In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
from to integers is arbitrary, so this representation of all the subsets of is not unique, but the sort order of the enumerated set does not change its cardinality. (E.g., can be used to construct another bijective from to the integers without changing the number of one-to-one correspondences.) However, such finite binary representation is only possible if ''S'' can be enumerated. (In this example, , , and are enumerated with 1, 2, and 3 respectively as the position of binary digit sequences.) The enumeration is possible even if has an infinite cardinality (i.e., the number of elements in is infinite), such as the set of integers or rationals, but not possible for example if ''S'' is the set of real numbers, in which case we cannot enumerate all irrational numbers.


Relation to binomial theorem

The
binomial theorem In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
is closely related to the power set. A –elements combination from some set is another name for a –elements subset, so the number of
combination In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are th ...
s, denoted as (also called
binomial coefficient In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
) is a number of subsets with elements in a set with elements; in other words it's the number of sets with elements which are elements of the power set of a set with elements. For example, the power set of a set with three elements, has: *C(3, 0) = 1 subset with 0 elements (the empty subset), *C(3, 1) = 3 subsets with 1 element (the singleton subsets), *C(3, 2) = 3 subsets with 2 elements (the complements of the singleton subsets), *C(3, 3) = 1 subset with 3 elements (the original set itself). Using this relationship, we can compute \left, 2^S \ using the formula: \left, 2^S \right , = \sum_^ \binom Therefore, one can deduce the following identity, assuming , S, = n: \left , 2^S \ = 2^n = \sum_^ \binom


Recursive definition

If S is a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. Th ...
, then a
recursive definition In mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set ( Aczel 1977:740ff). Some examples of recursively-definable objects include facto ...
of P(S) proceeds as follows: *If S = \, then P(S) = \. *Otherwise, let e\in S and T=S\setminus\; then P(S) = P(T)\cup \. In words: * The power set of the empty set is a
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
whose only element is the empty set. * For a non-empty set S, let e be any element of the set and T its
relative complement In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is th ...
; then the power set of S is a
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
of a power set of T and a power set of T whose each element is expanded with the e element.


Subsets of limited cardinality

The set of subsets of of cardinality less than or equal to is sometimes denoted by or , and the set of subsets with cardinality strictly less than is sometimes denoted or . Similarly, the set of non-empty subsets of might be denoted by or .


Power object

A set can be regarded as an algebra having no nontrivial operations or defining equations. From this perspective, the idea of the power set of as the set of subsets of generalizes naturally to the subalgebras of an algebraic structure or algebra. The power set of a set, when ordered by inclusion, is always a complete atomic Boolean algebra, and every complete atomic Boolean algebra arises as the
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
of all subsets of some set. The generalization to arbitrary algebras is that the set of subalgebras of an algebra, again ordered by inclusion, is always an
algebraic lattice {{Unreferenced, date=December 2008 In the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not ...
, and every algebraic lattice arises as the lattice of subalgebras of some algebra. So in that regard, subalgebras behave analogously to subsets. However, there are two important properties of subsets that do not carry over to subalgebras in general. First, although the subsets of a set form a set (as well as a lattice), in some classes it may not be possible to organize the subalgebras of an algebra as itself an algebra in that class, although they can always be organized as a lattice. Secondly, whereas the subsets of a set are in bijection with the functions from that set to the set = 2, there is no guarantee that a class of algebras contains an algebra that can play the role of 2 in this way. Certain classes of algebras enjoy both of these properties. The first property is more common, the case of having both is relatively rare. One class that does have both is that of
multigraph In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called ''parallel edges''), that is, edges that have the same end nodes. Thus two vertices may be connected by more ...
s. Given two multigraphs and , a
homomorphism In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" ...
consists of two functions, one mapping vertices to vertices and the other mapping edges to edges. The set of homomorphisms from to can then be organized as the graph whose vertices and edges are respectively the vertex and edge functions appearing in that set. Furthermore, the subgraphs of a multigraph are in bijection with the graph homomorphisms from to the multigraph definable as the complete directed graph on two vertices (hence four edges, namely two self-loops and two more edges forming a cycle) augmented with a fifth edge, namely a second self-loop at one of the vertices. We can therefore organize the subgraphs of as the multigraph , called the power object of . What is special about a multigraph as an algebra is that its operations are unary. A multigraph has two sorts of elements forming a set of vertices and of edges, and has two unary operations giving the source (start) and target (end) vertices of each edge. An algebra all of whose operations are unary is called a
presheaf In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
. Every class of presheaves contains a presheaf that plays the role for subalgebras that 2 plays for subsets. Such a class is a special case of the more general notion of elementary
topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notio ...
as a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
that is closed (and moreover
cartesian closed In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in math ...
) and has an object , called a
subobject classifier In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object ''X'' in the category correspond to the morphisms from ''X'' to Ω. In typical examples, that morphism assigns "true ...
. Although the term "power object" is sometimes used synonymously with
exponential object In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed c ...
, in topos theory is required to be .


Functors and quantifiers

In category theory and the theory of elementary topoi, the universal quantifier can be understood as the
right adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
of a
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
between power sets, the
inverse image In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
functor of a function between sets; likewise, the
existential quantifier In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, w ...
is the
left adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
.
Saunders Mac Lane Saunders Mac Lane (4 August 1909 – 14 April 2005) was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near where his family lived in Taftville ...
,
Ieke Moerdijk Izak (Ieke) Moerdijk (; born 23 January 1958) is a Dutch mathematician, currently working at Utrecht University, who in 2012 won the Spinoza prize. Education and career Moerdijk studied mathematics, philosophy and general linguistics at the Uni ...
, (1992) ''Sheaves in Geometry and Logic'' Springer-Verlag. ''See page 58''


See also

*
Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be ...
*
Family of sets In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set fami ...
*
Field of sets In mathematics, a field of sets is a mathematical structure consisting of a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X called an algebra over X that contains the empty set as an element, and is closed un ...
*
Combination In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are th ...


References


Bibliography

* * *


External links

* * *
Power set Algorithm
in
C++ C++ (pronounced "C plus plus") is a high-level general-purpose programming language created by Danish computer scientist Bjarne Stroustrup as an extension of the C programming language, or "C with Classes". The language has expanded significan ...
{{Set theory Operations on sets