Channel Allocation Schemes
   HOME
*





Channel Allocation Schemes
In radio resource management for wireless and cellular networks, channel allocation schemes allocate bandwidth (signal processing), bandwidth and communication channels to base stations, access points and terminal equipment. The objective is to achieve maximum system spectral efficiency in bit/s/Hz/site by means of frequency reuse, but still assure a certain grade of service by avoiding co-channel interference and adjacent channel interference among nearby cells or networks that share the bandwidth. Channel-allocation schemes follow one of two types of strategy:Guowang Miao, Jens Zander, Ki Won Sung, and Ben Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, , 2016. # Fixed: FCA, fixed channel allocation: manually assigned by the network operator # Dynamic: ## DCA, dynamic channel allocation ## DFS, dynamic frequency selection ## Spread spectrum Static Channel Allocation In Fixed Channel Allocation or Fixed Channel Assignment (FCA) cellular network, each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radio Resource Management
Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible. RRM concerns multi-user and multi-cell network capacity issues, rather than the point-to-point channel capacity. Traditional telecommunications research and education often dwell on channel coding and source coding with a single user in mind, but when several users and adjacent base stations share the same frequency channel it may not be possible to achiev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radar
Radar is a detection system that uses radio waves to determine the distance ('' ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. Radar was developed secretly for military use by several countries in the period before and during World War II. A key development was the cavity magnetron in the United Kingdom, which allowed the creation of relatively small systems with sub-meter resolution. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IS95
Interim Standard 95 (IS-95) was the first ever CDMA-based digital cellular technology. It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne. It is a 2G mobile telecommunications standard that uses code-division multiple access (CDMA), a multiple access scheme for digital radio, to send voice, data and signaling data (such as a dialed telephone number) between mobile telephones and cell sites. CDMA transmits streams of bits ( PN codes). CDMA permits several radios to share the same frequencies. Unlike TDMA "time division multiple access", a competing system used in 2G GSM, all radios can be active all the time, because network capacity does not directly limit the number of active radios. Since larger numbers of phones can be served by smaller numbers of cell-sites, CDMA-based standards have a significant economic advantage over TDMA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Burstiness
In statistics, burstiness is the intermittent increases and decreases in activity or frequency of an event.Lambiotte, R. (2013.) "Burstiness and Spreading on Temporal Networks", University of Namur. One of measures of burstiness is the Fano factor—a ratio between the variance and mean of counts. Burstiness is observable in natural phenomena, such as natural disasters, or other phenomena, such as network/data/email network traffic or vehicular traffic. Burstiness is, in part, due to changes in the probability distribution of inter-event times. Distributions of bursty processes or events are characterised by heavy, or fat, tails. Burstiness of inter-contact time between nodes in a time-varying network can decidedly slow spreading processes over the network. This is of great interest for studying the spread of information and disease. Burstiness Score One relatively simple measure of burstiness is burstiness score. The burstiness score of a subset t of time period T relative t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OFDMA
Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users. Comparisons OFDMA is often compared to the combination of OFDM with statistical time-division multiplexing. The advantages and disadvantages summarized below are further discussed in the Characteristics and principles of operation section. See also the list of OFDM key features. Advantages * Allows simultaneous low-data-rate transmission from several users. * Pulsed carrier can be avoided. * Lower maximal transmission power for low-data-rate users. * Shorter delay and constant delay. * Contention-based multiple access (collision avoidance) is simplified. * Further improves OFDM robustness to fading and interference. * Combat narrow-band interf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Global System For Mobile Communications
The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. GSM is also a trade mark owned by the GSM Association. GSM may also refer to the Full Rate voice codec. It was first implemented in Finland in December 1991. By the mid-2010s, it became a global standard for mobile communications achieving over 90% market share, and operating in over 193 countries and territories. 2G networks developed as a replacement for first generation (1G) analog cellular networks. The GSM standard originally described a digital, circuit-switched network optimized for Duplex (telecommunications)#Full duplex, full duplex voice telephony. This expanded over time to include data communications, first by Circuit Switched Data, circuit-switched transport, then by Network packet, packet data tran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FDMA
Frequency-division multiple access (FDMA) is a channel access method used in some multiple-access protocols. FDMA allows multiple users to send data through a single communication channel, such as a coaxial cable or microwave beam, by dividing the bandwidth of the channel into separate non-overlapping frequency sub-channels and allocating each sub-channel to a separate user. Users can send data through a subchannel by modulating it on a carrier wave at the subchannel's frequency. It is used in satellite communication systems and telephone trunklines. FDMA splits the total bandwidth into multiple channels. Each ground station on the earth is allocated a particular frequency group (or a range of frequencies). Within each group, the ground station can allocate different frequencies to individual channels, which are used by different stations connected to that ground station. Before the transmission begins, the transmitting ground station looks for an empty channel within the fre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Time Division Multiple Access
Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium (e.g. radio frequency channel) while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. TDMA was first used in satellite communication systems by Western Union in its Westar 3 communications satellite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RSSI
In telecommunications, received signal strength indicator (RSSI) is a measurement of the power present in a received radio signal. RSSI is usually invisible to a user of a receiving device. However, because signal strength can vary greatly and affect functionality in wireless networking, IEEE 802.11 devices often make the measurement available to users. RSSI is often derived in the intermediate frequency (IF) stage before the IF amplifier. In zero-IF systems, it is derived in the baseband signal chain, before the baseband amplifier. RSSI output is often a DC analog level. It can also be sampled by an internal analog-to-digital converter (ADC) and the resulting values made available directly or via peripheral or internal processor bus. In 802.11 implementations In an IEEE 802.11 system, RSSI is the relative received signal strength in a wireless environment, in arbitrary units. RSSI is an indication of the power level being received by the receiving radio after the antenna an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


U-NII
The Unlicensed National Information Infrastructure (U-NII) radio band, as defined by the United States Federal Communications Commission, is part of the radio frequency spectrum used by WLAN devices and by many wireless ISPs. As of March 2021, U-NII consists of eight ranges. U-NII 1 through 4 are for 5 GHz WLAN ( 802.11a and newer), and 5 through 8 are for 6 GHz WLAN ( 802.11ax) use. U-NII 2 is further divided into three subsections. Wireless ISPs generally use 5.725–5.825 GHz. In the USA licensed amateur radio operators are authorized 5.650–5.925 GHz by Part 97.303 of the FCC rules. U-NII power limits are defined by the United States CFR Title 47 (Telecommunication), Part 15 - Radio Frequency Devices, Subpart E - Unlicensed National Information Infrastructure Devices, Paragraph 15.407 - General technical requirements. Many other countries use similar bands for Wireless communication due to a shared IEEE standard. However, regulatory use in individual countri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C Band (IEEE)
The C band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a portion of the electromagnetic spectrum in the microwave range of frequencies ranging from 4.0 to 8.0  gigahertz (GHz). However, the U.S. Federal Communications Commission C band proceeding and auction, designated 3.7–4.2 GHz as C band. The C band is used for many satellite communications transmissions, some Wi-Fi devices, some cordless telephones, as well as some Radar and weather radar systems. Use in satellite communication The communications C band was the first frequency band that was allocated for commercial telecommunications via satellites. The same frequencies were already in use for terrestrial microwave radio relay chains. Nearly all C-band communication satellites use the band of frequencies from 3.7 to 4.2 GHz for their downlinks, and the band of frequencies from 5.925 to 6.425 GHz for their uplinks. Note that by using the band fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terminal Doppler Weather Radar
Terminal Doppler Weather Radar (TDWR) is a Doppler weather radar system with a three-dimensional "pencil beam" used primarily for the detection of hazardous wind shear conditions, precipitation, and winds aloft on and near major airports situated in climates with great exposure to thunderstorms in the United States. As of 2011, all were in-service with 45 operational radars, some covering multiple airports in major metropolitan locations, across the United States & Puerto Rico. Several similar weather radars have also been sold to other countries such as China (Hong Kong). Funded by the United States Federal Aviation Administration (FAA), TDWR technology was developed in the early 1990s at Lincoln Laboratory, part of the Massachusetts Institute of Technology, to assist air traffic controllers by providing real-time wind shear detection and high-resolution precipitation data. The primary advantage of TDWRs over previous weather radars is that it has a finer range resolution—me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]