Central Series
   HOME
*





Central Series
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algrebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras. A general group possesses a lower central series and upper central series (also called the descending central series and ascending central series, respectively), but these are central series in the strict sense (terminating in the trivial subgroup) if and only if the group is nilpotent. A related but distinct construction is the derived series, which terminates in the trivial subgroup whenever the group is solvable. Definition A central series is a sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nilpotent Group
In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, its central series is of finite length or its lower central series terminates with . Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov. Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups. Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent, lower central series, and upper central series. Definition The definition uses the idea of a central series for a group. The followi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generating Set Of A Group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In other words, if ''S'' is a subset of a group ''G'', then , the ''subgroup generated by S'', is the smallest subgroup of ''G'' containing every element of ''S'', which is equal to the intersection over all subgroups containing the elements of ''S''; equivalently, is the subgroup of all elements of ''G'' that can be expressed as the finite product of elements in ''S'' and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If ''G'' = , then we say that ''S'' ''generates'' ''G'', and the elements in ''S'' are called ''generators'' or ''group generators''. If ''S'' is the empty set, then is the trivial group , since we consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Engel's Theorem
In representation theory, a branch of mathematics, Engel's theorem states that a finite-dimensional Lie algebra \mathfrak g is a nilpotent Lie algebra_if_and_only_if_for_each_X_\in_\mathfrak_g,_the_adjoint_representation_of_a_Lie_algebra.html" "title="mathfrak,\mathfrak ... if and only if for each X \in \mathfrak g, the adjoint representation of a Lie algebra">adjoint map :\operatorname(X)\colon \mathfrak \to \mathfrak, given by \operatorname(X)(Y) = [X, Y], is a nilpotent endomorphism on \mathfrak; i.e., \operatorname(X)^k = 0 for some ''k''. It is a consequence of the theorem, also called Engel's theorem, which says that if a Lie algebra of matrices consists of nilpotent matrices, then the matrices can all be simultaneously brought to a strictly upper triangular form. Note that if we merely have a Lie algebra of matrices which is nilpotent ''as a Lie algebra'', then this conclusion does ''not'' follow (i.e. the naïve replacement in Lie's theorem of "solvable" with "nilpotent", ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint Representation Of A Lie Group
In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n, \mathbb), the Lie group of real ''n''-by-''n'' invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible ''n''-by-''n'' matrix g to an endomorphism of the vector space of all linear transformations of \mathbb^n defined by: x \mapsto g x g^ . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of ''G'' on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Definition Let ''G'' be a Lie group, and let :\Psi: G \to \operatorname(G) be the mapping , with Aut(''G'') the automorphism group of ''G'' and given by the inner automorphism (conjugation) :\Psi_g(h)= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flag (linear Algebra)
In mathematics, particularly in linear algebra, a flag is an increasing sequence of subspaces of a finite-dimensional vector space ''V''. Here "increasing" means each is a proper subspace of the next (see filtration): :\ = V_0 \sub V_1 \sub V_2 \sub \cdots \sub V_k = V. The term ''flag'' is motivated by a particular example resembling a flag: the zero point, a line, and a plane correspond to a nail, a staff, and a sheet of fabric. If we write that dim''V''''i'' = ''d''''i'' then we have :0 = d_0 < d_1 < d_2 < \cdots < d_k = n, where ''n'' is the of ''V'' (assumed to be finite). Hence, we must have ''k'' ≤ ''n''. A flag is called a complete flag if ''d''''i'' = ''i'' for all ''i'', otherwise it is called a partial flag. A partial flag can be obtained from a complete flag by deleting some of the subspaces. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Commutator Subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Center (group)
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is always a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Series
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Upper Triangular
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix ''L'' and an upper triangular matrix ''U'' if and only if all its leading principal minors are non-zero. Description A matrix of the form :L = \begin \ell_ & & & & 0 \\ \ell_ & \ell_ & & & \\ \ell_ & \ell_ & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_ & \ell_ & \ldots & \ell_ & \ell_ \end is called a lower triangular matrix or left triangular matrix, and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]