Cen X-3
   HOME
*





Cen X-3
Centaurus X-3 (4U 1118-60) is an X-ray pulsar with a period of 4.84 seconds. It was the first X-ray pulsar to be discovered, and the third X-ray source to be discovered in the constellation Centaurus. The system consists of a neutron star orbiting a massive, O-type supergiant star dubbed Krzeminski's star after its discoverer, Wojciech Krzemiński. Matter is being accreted from the star onto the neutron star, resulting in X-ray emission. History Centaurus X-3 was first observed during experiments of cosmic X-ray sources made on May 18, 1967. These initial X-ray spectrum and location measurements were performed using a sounding rocket. In 1971, further observations were performed with the Uhuru satellite, in the form of twenty-seven 100-second duration sightings. These sightings were found to pulsate with an average period of 4.84 seconds, with a variation in the period of 0.02 seconds. Later, it became clear that the period variations followed a 2.09 day sinusoidal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doppler Effect
The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession. The reason for the Doppler effect is that when the source of the waves is moving towards the observer, each successive wave crest is emitted from a position closer to the observer than the crest of the previous wave. Therefore, each wave takes slightly less time to reach the observer than the previous wave. Hence, the time between the arrivals of successive wave crests at the observer is reduced, causing an increa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hercules X-1
Hercules X-1 (Her X-1), also known as 4U1656+35, is a moderately strong X-ray binary source first studied by the Uhuru satellite. It is composed of a neutron star accreting matter from a normal star (HZ Her) probably due to Roche lobe overflow. Intermediate-mass X-ray binary (IMXB) Her X-1 is the prototype for the massive X-ray binaries although it falls on the borderline, , between high- and low-mass X-ray binaries. An intermediate-mass X-ray binary (IMXB) is a binary star system where one of the components is a neutron star or a black hole. The other component is an intermediate mass star. Intensity The source exhibits complex time variability, pulsing with a period of 1.24 s due to the rotation of the neutron star, eclipsing every 1.70 days with the period of the binary orbit, and also varying with a 35-day period believed associated with the precession of the accretion disk. From observations, a twisted accretion disk, in retrograde precession, modulates the X-rays i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutron Star Spin-up
Neutron star spin up is the name given to the increase in rotational speed over time first noted in Cen X-3 and Her X-1 but now observed in other X-ray pulsars. In the case of Cen X-3, the pulse period is decreasing over a timescale of 3400 years (defined as P/\dot, where P is the rotation period and \dot is the rate of change in the rotation period). Ever since the detection of the first millisecond pulsar (MSP), it has been theorized that MSPs are neutron stars that have been spun up by accretion in a close binary system. The change in rotational period of the neutron star comes from the transition region between the magnetosphere and the plasma flow from the companion star. In this context the magnetosphere is defined as the region of space surrounding the neutron star, in which the magnetic field determines the motion of the plasma. Inside the magnetic field, the plasma will eventually co-rotate with the neutron star while in the transition region, angular momentum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, and are created by electric currents such as those used in electromagnets, and by electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Energy
Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (converted into kinetic energy) when the objects fall towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy U is given by U = -\frac, where M and m are the masses of the two particles, R is the distance between them, and G is the gravitational constant. Close to the Earth's surface, the gravitational field is approximately constant, and the gravitational potential energy of an object reduces to U = mgh where m is the object's mass, g = / is the gravity of Earth, and h is the height of the object's center of mass above a chosen reference level. Newtonian mechanics In classical mechanics, two or more masses alw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accretion Disc
An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward towards the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology. Manifestations Accretion disks are a ubiquitous phenomenon in astrophysics; active galactic nuclei, protoplanetary disks, and gamma ray bursts all involve accretion disks. These disks ver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrangian Point
In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem in which two bodies are far more massive than the third. Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the gravitational forces of the two large bodies and the centrifugal force balance each other. This can make Lagrange points an excellent location for satellites, as few orbit corrections are needed to maintain the desired orbit. Small objects placed in orbit at Lagrange points are in equilibrium in at least two directions relative to the center of mass of the large bodies. For any combination of two orbital bodies there are five Lagrange points, L1 to L5, all in the orbital plane of the two lar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectroscopic Binary
A binary star is a system of two star, stars that are gravity, gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in which case they are called ''visual binaries''. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (''spectroscopic binaries'') or astrometry (''astrometric binaries''). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit (astronomy), transit each other; these pairs are called ''eclipsing binaries'', or, together with other binaries that change brightness as they orbit, ''photometric binaries''. If components in binary star systems are close enough they can gravitationally distort their mutual outer stella ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kiloparsecs
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and is defined as the distance at which 1 au subtends an angle of one arcsecond ( of a degree). This corresponds to astronomical units, i.e. 1\, \mathrm = 1/\tan \left( \ \mathrm \right)\, \mathrm. The nearest star, Proxima Centauri, is about from the Sun. Most stars visible to the naked eye are within a few hundred parsecs of the Sun, with the most distant at a few thousand. The word ''parsec'' is a portmanteau of "parallax of one second" and was coined by the British astronomer Herbert Hall Turner in 1913 to make calculations of astronomical distances from only raw observational data easy for astronomers. Partly for this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in pop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spektr-RG
Spektr-RG (Russian: Спектр-РГ, ''Spectrum'' + '' Röntgen'' + ''Gamma''; also called Spectrum-X-Gamma, SRG, SXG) is a Russian–German high-energy astrophysics space observatory which was launched on 13 July 2019. It follows on from the Spektr-R satellite telescope launched in 2011. Background The original idea for this X-ray observatory satellite orbiting above Earth's atmosphere, which filters X-rays, was first proposed in the 1980s by Rashid Sunyaev of the Space Research Institute of the USSR Academy of Sciences. Twenty institutions from twelve countries came together to design a large observatory with five telescopes. However, after the collapse of the Soviet Union, the mission was abandoned due to cost-cutting from the Russian space program Roscosmos. The project was resurrected in 2003 with a scaled-down design. Overview The primary instrument of the mission is eROSITA, built by the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. It is des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ART-XC
The Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) is an X-ray telescope with a grazing incidence mirror that is capable of capturing high energy X-ray photons within the 5-30 keV energy range. This telescope is one of the two X-ray telescopes on the Spektr-RG (SRG) mission. The other telescope that SRG carries is eROSITA. The observatory was launched on 13 July 2019 via a Proton rocket from the Russian launch site Baikonur in Kazakhstan. Overview ART-XC was developed by the Space Research Institute (IKI) and the All-Russian Scientific Research Institute for Experimental Physics (VNIIEF). The NASA Marshall Space Flight Center (MSFC) has developed and fabricated flight models of the X-ray mirror systems. The ART-XC telescope consists of 7 identical mirror modules each made with 28 nickel-cobalt grazing-incidence mirrors. The mirror design is Wolter-I and is coated with iridium. Each module also has its own cadmium-tellurium double-sided strip detector. The typical on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]