Category (topology)
   HOME
*





Category (topology)
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details. A topological space X is called a Baire space if it satisfies any of the following ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cantor Space
In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the" Cantor space. Examples The Cantor set itself is a Cantor space. But the canonical example of a Cantor space is the countably infinite topological product of the discrete 2-point space . This is usually written as 2^\mathbb or 2ω (where 2 denotes the 2-element set with the discrete topology). A point in 2ω is an infinite binary sequence, that is a sequence which assumes only the values 0 or 1. Given such a sequence ''a''0, ''a''1, ''a''2,..., one can map it to the real number :\sum_^\infty \frac. This mapping gives a homeomorphism from 2ω onto the Cantor set, demonstrating that 2ω is indeed a Cantor space. Cantor spaces occur abundantly in real analysis. For example, they exist as subspaces in every perfect, complete metric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Through consideration of this set, Cantor and others helped lay the foundations of modern point-set topology. The most common construction is the Cantor ternary set, built by removing the middle third of a line segment and then repeating the process with the remaining shorter segments. Cantor mentioned the ternary construction only in passing, as an example of a more general idea, that of a perfect set that is nowhere dense. More generally, in topology, ''a'' Cantor space is a topological space homeomorphic to the Cantor ternary set (equipped with its subspace topology). By a theorem of Brouwer, this is equivalent to being perfect nonempty, compact metrizable and zero dimensional. Construction and formula of the ternary set The Cantor tern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polish Space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians— Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any separable Banach space, the Cantor space, and the Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the open interval (0, 1) is Polish. Between any two uncountable Polish spaces, there is a Borel isomorphism; that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Space (set Theory)
In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its elements are often called "reals". It is denoted NN, ωω, by the symbol \mathcal or also ωω, not to be confused with the countable ordinal obtained by ordinal exponentiation. The Baire space is defined to be the Cartesian product of countably infinitely many copies of the set of natural numbers, and is given the product topology (where each copy of the set of natural numbers is given the discrete topology). The Baire space is often represented using the tree of finite sequences of natural numbers. The Baire space can be contrasted with Cantor space, the set of infinite sequences of binary digits. Topology and trees The product topology used to define the Baire space can be described more concretely in terms of trees. The basic open sets of the product topology are cylinder sets, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homeomorphic
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Irrational Number
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being '' incommensurable'', meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself. Among irrational numbers are the ratio of a circle's circumference to its diameter, Euler's number ''e'', the golden ratio ''φ'', and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational. Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact Hausdorff
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighbourhood ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact Regular
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighbourhoo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Metrizable
In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (''X'', ''T'') for which there exists at least one metric ''d'' on ''X'' such that (''X'', ''d'') is a complete metric space and ''d'' induces the topology ''T''. The term topologically complete space is employed by some authors as a synonym for ''completely metrizable space'', but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or Čech-complete spaces. Difference between ''complete metric space'' and ''completely metrizable space'' The difference between ''completely metrizable space'' and ''complete metric space'' is in the words ''there exists at least one metric'' in the definition of completely metrizable space, which is not the same as ''there is given a metric'' (the latter would yield the definition of complete metric space). Once we make the choice of the metric on a completely metrizable space (out of all the com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]