Cartan Criterion
   HOME
*





Cartan Criterion
In mathematics, Cartan's criterion gives conditions for a Lie algebra in characteristic 0 to be solvable, which implies a related criterion for the Lie algebra to be semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on \mathfrak defined by the formula : B(u,v)=\operatorname(\operatorname(u)\operatorname(v)), where tr denotes the trace of a linear operator. The criterion was introduced by .Cartan, Chapitre IV, Théorème 1 Cartan's criterion for solvability Cartan's criterion for solvability states: :''A Lie subalgebra \mathfrak of endomorphisms of a finite-dimensional vector space over a field of characteristic zero is solvable if and only if \operatorname(ab)=0 whenever a\in\mathfrak,b\in mathfrak,\mathfrak'' The fact that \operatorname(ab)=0 in the solvable case follows from Lie's theorem that puts \mathfrak g in the upper triangular form over the algebraic closure of the ground field (the trace can be computed after extending the groun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Lie Algebra
In mathematics, a Lie algebra \mathfrak is solvable if its derived series terminates in the zero subalgebra. The ''derived Lie algebra'' of the Lie algebra \mathfrak is the subalgebra of \mathfrak, denoted : mathfrak,\mathfrak/math> that consists of all linear combinations of Lie brackets of pairs of elements of \mathfrak. The ''derived series'' is the sequence of subalgebras : \mathfrak \geq mathfrak,\mathfrak\geq \mathfrak,\mathfrak mathfrak,\mathfrak \geq [ \mathfrak,\mathfrak mathfrak,\mathfrak, \mathfrak,\mathfrak mathfrak,\mathfrak] \geq ... If the derived series eventually arrives at the zero subalgebra, then the Lie algebra is called solvable. The derived series for Lie algebras is analogous to the derived series for commutator subgroups in group theory, and solvable Lie algebras are analogs of solvable groups. Any nilpotent Lie algebra_is_a_fortiori.html" ;"title="mathfrak,\mathfrak ... is a fortiori">mathfrak,\mathfrak ... is a fortiori solvable but the converse is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Killing Form
In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras. History and name The Killing form was essentially introduced into Lie algebra theory by in his thesis. In a historical survey of Lie theory, has described how the term ''"Killing form"'' first occurred in 1951 during one of his own reports for the Séminaire Bourbaki; it arose as a misnomer, since the form had previously been used by Lie theorists, without a name attached. Some other authors now employ the term ''" Cartan-Killing form"''. At the end of the 19th century, Killing had noted that the coefficients of the characteristic equation of a regular semisimple element of a Lie algebra are invariant under the adjoint group, from which it follows tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symmetric Bilinear Form
In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function B that maps every pair (u,v) of elements of the vector space V to the underlying field such that B(u,v)=B(v,u) for every u and v in V. They are also referred to more briefly as just symmetric forms when "bilinear" is understood. Symmetric bilinear forms on finite-dimensional vector spaces precisely correspond to symmetric matrices given a basis for ''V''. Among bilinear forms, the symmetric ones are important because they are the ones for which the vector space admits a particularly simple kind of basis known as an orthogonal basis (at least when the characteristic of the field is not 2). Given a symmetric bilinear form ''B'', the function is the associated quadratic form on the vector space. Moreover, if the characteristic of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Zero
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie's Theorem
In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if \pi: \mathfrak \to \mathfrak(V) is a finite-dimensional representation of a solvable Lie algebra, then there's a flag V = V_0 \supset V_1 \supset \cdots \supset V_n = 0 of invariant subspaces of \pi(\mathfrak) with \operatorname V_i = i, meaning that \pi(X)(V_i) \subseteq V_i for each X \in \mathfrak and ''i''. Put in another way, the theorem says there is a basis for ''V'' such that all linear transformations in \pi(\mathfrak) are represented by upper triangular matrices. This is a generalization of the result of Frobenius that commuting matrices are simultaneously upper triangularizable, as commuting matrices generate an abelian Lie algebra, which is a fortiori solvable. A consequence of Lie's theorem is that any finite dimensional solvable Lie algebra over a field of characteristic 0 has a nilpotent derived algebra (see #Consequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jordan–Chevalley Decomposition
In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent part. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects. Decomposition of a linear operator Consider linear operators on a finite-dimensional vector space over a field. An operator T is semisimple if every T-invariant subspace has a complementary T-invariant subspace (if the underlying field is algebraically closed, this is the same as the requir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degenerate Form
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent definition when ''V'' is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero ''x'' in ''V'' such that :f(x,y)=0\, for all \,y \in V. Nondegenerate forms A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that v \mapsto (x \mapsto f(x,v)) is an isomorphism, or equivalently in finite dimensions, if and only if :f(x,y)=0 for all y \in V implies that x = 0. The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map V \to V^* be an isomorphism, not positivity. For example, a manifold with an inner product structure on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]