Cartan's Theorems A And B
   HOME
*





Cartan's Theorems A And B
In mathematics, Cartan's theorems A and B are two results proved by Henri Cartan around 1951, concerning a coherent sheaf on a Stein manifold . They are significant both as applied to several complex variables, and in the general development of sheaf cohomology. Theorem B is stated in cohomological terms (a formulation that Cartan ( 1953, p. 51) attributes to J.-P. Serre): Analogous properties were established by Serre (1957) for coherent sheaves in algebraic geometry, when is an affine scheme. The analogue of Theorem B in this context is as follows : These theorems have many important applications. For instance, they imply that a holomorphic function on a closed complex submanifold, , of a Stein manifold can be extended to a holomorphic function on all of . At a deeper level, these theorems were used by Jean-Pierre Serre to prove the GAGA theorem. Theorem B is sharp in the sense that if for all coherent sheaves on a complex manifold (resp. quasi-coherent she ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Scheme
In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings \mathcal. Zariski topology For any ideal ''I'' of ''R'', define V_I to be the set of prime ideals containing ''I''. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For ''f'' ∈ ''R'', define ''D''''f'' to be the set of prime ideals of ''R'' not containing ''f''. Then each ''D''''f'' is an open subset of \operatorname(R), and \ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: in fact, the maximal ideals in ''R'' are precisely the closed points in this topology. By the same reasoning, it is not, in general, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Several Complex Variables
The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables (and analytic space), that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function f:(z_1,z_2, \ldots, z_n) \rightarrow f(z_1,z_2, \ldots, z_n) is -tuples of complex numbers, classically studied on the complex coordinate space \Complex^n. As in complex analysis of functions of one variable, which is the case , the functions studied are ''holomorphic'' or ''complex analytic'' so that, locally, they are power series in the variables . Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the -dimensional Cauchy–Riemann equations. For one complex variable, every domainThat is an open connected subset. (D \subs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annales De L'Institut Fourier
The ''Annales de l'Institut Fourier'' is a French mathematical journal publishing papers in all fields of mathematics. It was established in 1949. The journal publishes one volume per year, consisting of six issues. The current editor-in-chief is Hervé Pajot. Articles are published either in English or in French. The journal is indexed in ''Mathematical Reviews'', ''Zentralblatt MATH'' and the Web of Science. According to the ''Journal Citation Reports'', the journal had a 2008 impact factor of 0.804. 2008 Journal Citation Reports, Science Edition, Thomson Scientific Thomson Scientific was one of the six (later five) strategic business units of The Thomson Corporation, beginning in 2007, after being separated from Thomson Scientific & Healthcare. Following the merger of Thomson with Reuters Group to form Thom ..., 2008. References External links * Mathematics journals Academic journals established in 1949 Multilingual journals Bimonthly journals Open access journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prentice Hall
Prentice Hall was an American major educational publisher owned by Savvas Learning Company. Prentice Hall publishes print and digital content for the 6–12 and higher-education market, and distributes its technical titles through the Safari Books Online e-reference service. History On October 13, 1913, law professor Charles Gerstenberg and his student Richard Ettinger founded Prentice Hall. Gerstenberg and Ettinger took their mothers' maiden names, Prentice and Hall, to name their new company. Prentice Hall became known as a publisher of trade books by authors such as Norman Vincent Peale; elementary, secondary, and college textbooks; loose-leaf information services; and professional books. Prentice Hall acquired the training provider Deltak in 1979. Prentice Hall was acquired by Gulf+Western in 1984, and became part of that company's publishing division Simon & Schuster. S&S sold several Prentice Hall subsidiaries: Deltak and Resource Systems were sold to National Education ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cousin Problems
In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They are now posed, and solved, for any complex manifold ''M'', in terms of conditions on ''M''. For both problems, an open cover of ''M'' by sets ''Ui'' is given, along with a meromorphic function ''fi'' on each ''Ui''. First Cousin problem The first Cousin problem or additive Cousin problem assumes that each difference :f_i-f_j is a holomorphic function, where it is defined. It asks for a meromorphic function ''f'' on ''M'' such that :f-f_i is ''holomorphic'' on ''Ui''; in other words, that ''f'' shares the singular behaviour of the given local function. The given condition on the f_i-f_j is evidently ''necessary'' for this; so the problem amounts to asking if it is sufficient. The case of one variable is the Mittag-Leffler theorem on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GAGA
Gaga ( he, גע גע literally 'touch touch') (also: ga-ga, gaga ball, or ga-ga ball) is a variant of dodgeball that is played in a gaga "pit". The game combines dodging, striking, running, and jumping, with the objective of being the last person standing. Players hit the ball at each other with their hands, and are eliminated if the ball strikes them on or below the knee. The game can be played by a group of individual players or with teams, as well as in one-on-one matches. Rules, ball types, pit surfaces, and pit sizes can vary widely at different venues. Gameplay Gaga is played in a large fenced-in area (usually an octagon or hexagon) called a gaga pit. The gaga pit generally consists of flat walls atop a smooth dirt, turf, sand, or rubberized surface. The gaga ball can vary in size and form, generally ranging from a foam dodgeball to a rubber kickball. In some games, the ball may not actually take the shape of a sphere if the proper equipment is not available. The game begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zariski Topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasi-coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X-modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is an ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work. Proofs employ logic expressed in mathematical symbols ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]