Carminati–McLenaghan Invariants
   HOME
*





Carminati–McLenaghan Invariants
In general relativity, the Carminati–McLenaghan invariants or CM scalars are a set of 16 scalar curvature invariants for the Riemann tensor. This set is usually supplemented with at least two additional invariants. Mathematical definition The CM invariants consist of 6 real scalars plus 5 complex scalars, making a total of 16 invariants. They are defined in terms of the Weyl tensor C_ and its right (or left) dual _=(1/2)\epsilon_C_^, the Ricci tensor R_, and the ''trace-free Ricci tensor'' : S_ = R_ - \frac \, R \, g_ In the following, it may be helpful to note that if we regard _b as a matrix, then _m \, _b is the ''square'' of this matrix, so the ''trace'' of the square is _b \, _a, and so forth. The real CM scalars are: #R = _m (the trace of the Ricci tensor) #R_1 = \frac \, _b \, _a #R_2 = -\frac \, _b \, _c \, _a #R_3 = \frac \, _b \, _c \, _d \, _a #M_3 = \frac \, S^ \, S_ \left( C_ \, C^ + _ \, ^ \right) #M_4 = -\frac \, S^ \, S^ \, _d \, \left( ^ \, C_ + ^ \, _ \righ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spherically Symmetric Spacetime
In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze. Spherically symmetric models are not entirely inappropriate: many of them have Penrose diagrams similar to those of rotating spacetimes, and these typically have qualitative features (such as Cauchy horizons) that are unaffected by rotation. One such application is the study of mass inflation due to counter-moving streams of infalling matter in the interior of a black hole. Formal definition A spherically symmetric spacetime is a spacetime whose isometry group contains a subgroup which is isomorphic to the rotation group SO(3) and the orbits of this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curvature Invariant
In Riemannian geometry and pseudo-Riemannian geometry, curvature invariants are scalar quantities constructed from tensors that represent curvature. These tensors are usually the Riemann tensor, the Weyl tensor, the Ricci tensor and tensors formed from these by the operations of taking dual contractions and covariant differentiations. Types of curvature invariants The invariants most often considered are ''polynomial invariants''. These are polynomials constructed from contractions such as traces. Second degree examples are called ''quadratic invariants'', and so forth. Invariants constructed using covariant derivatives up to order n are called n-th order ''differential invariants''. The Riemann tensor is a multilinear operator of fourth rank acting on tangent vectors. However, it can also be considered a linear operator acting on bivectors, and as such it has a characteristic polynomial, whose coefficients and roots (eigenvalues) are polynomial scalar invariants. Physi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syzygy (mathematics)
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution. More precisely, if e_1,\dots,e_n are elements of a (left) module over a ring (the case of a vector space over a field is a special case), a relation between e_1,\dots,e_n is a sequence (f_1,\dots, f_n) of elements of such that :f_1e_1+\dots+f_ne_n=0. The relations between e_1,\dots,e_n form a module. One is generally interested in the case where e_1,\dots,e_n is a generating set of a finitely generated module , in which case the module of the relations is often called a syzygy module of . The syzygy module depends on the choice of a generating set, but it is unique up to the direct sum with a free module. That is, if S_1 and S_2 are syzygy modules corresponding to two generating sets of the same module, then they are stably isomorphic, which means that there exist two free modules L_1 and L_2 such that S_1\oplus L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fluid Solution
In general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models. Mathematical definition The stress–energy tensor of a relativistic fluid can be written in the form :T^ = \mu \, u^a \, u^b + p \, h^ + \left( u^a \, q^b + q^a \, u^b \right) + \pi^ Here * the world lines of the fluid elements are the integral curves of the velocity vector u^a, * the projection tensor h_ = g_ + u_a \, u_b projects other tensors onto hyperplane elements orthogonal to u^a, * the matter density is given by the scalar function \mu, * the pressure is given by the scalar function p, * the heat flux vector is given by q^a, * the viscous shear tensor is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electrovacuum Solution
In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) ''source-free'' Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) ''Einstein–Maxwell solutions''. Definition In general relativity, the geometric setting for physical phenomena is a Lorentzian manifold, which is interpreted as a curved spacetime, and which is specified by defining a metric tensor g_ (or by defining a frame field). The Riemann curvature tensor R_ of this manifold and associated quantities such as the Einstein tensor G^, are well-defined. In general relativity, they can be interpreted as geometric manifestations (curvature and forces) of the gravitational field. We also need to specify an electromagnetic field by defining an electr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum Solution (general Relativity)
In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term (and thus, the lambdavacuums can be taken as cosmological models). More generally, a vacuum region in a Lorentzian manifold is a region in which the Einstein tensor vanishes. Vacuum solutions are a special case of the more general exact solutions in general relativity. Equivalent conditions It is a mathematical fact that the Einstein tensor vanishes if and only if the Ricci tensor vanishes. This follows from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Set
Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies that there are no "holes" in the real numbers * Complete metric space, a metric space in which every Cauchy sequence converges * Complete uniform space, a uniform space where every Cauchy net in converges (or equivalently every Cauchy filter converges) * Complete measure, a measure space where every subset of every null set is measurable * Completion (algebra), at an ideal * Completeness (cryptography) * Completeness (statistics), a statistic that does not allow an unbiased estimator of zero * Complete graph, an undirected graph in which every pair of vertices has exactly one edge connecting them * Complete category, a category ''C'' where every diagram from a small category to ''C'' has a limit; it is ''cocomplete'' if every such fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Newman–Penrose Formalism
The Newman–Penrose (NP) formalism The original paper by Newman and Penrose, which introduces the formalism, and uses it to derive example results.Ezra T Newman, Roger Penrose. ''Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients''. Journal of Mathematical Physics, 1963, 4(7): 998. is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curvature Invariant
In Riemannian geometry and pseudo-Riemannian geometry, curvature invariants are scalar quantities constructed from tensors that represent curvature. These tensors are usually the Riemann tensor, the Weyl tensor, the Ricci tensor and tensors formed from these by the operations of taking dual contractions and covariant differentiations. Types of curvature invariants The invariants most often considered are ''polynomial invariants''. These are polynomials constructed from contractions such as traces. Second degree examples are called ''quadratic invariants'', and so forth. Invariants constructed using covariant derivatives up to order n are called n-th order ''differential invariants''. The Riemann tensor is a multilinear operator of fourth rank acting on tangent vectors. However, it can also be considered a linear operator acting on bivectors, and as such it has a characteristic polynomial, whose coefficients and roots (eigenvalues) are polynomial scalar invariants. Physi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Spinors
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion). In condensed matter physics, some materials can display quasiparticles that behave as Weyl fermions, leading to the notion of Weyl semimetals. Mathematically, any Dirac fermion can be decomposed as two Weyl fermions of opposite chirality coupled by the mass term. History The Dirac equation, was published in 1928 by Paul Dirac, first describing spin-½ particles in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ricci Spinors
Ricci () is an Italians, Italian surname, derived from the adjective "riccio", meaning Curly-hair, curly. Notable Riccis Arts and entertainment * Antonio Ricci (painter) (c.1565–c.1635), Spanish Baroque painter of Italian origin * Christina Ricci (born 1980), American actress * Federico Ricci (1809–77), Italian composer * Franco Maria Ricci (1937–2020), Italian art publisher * Italia Ricci (born 1986), Canadian actress * Jason Ricci (born 1974), American blues harmonica player * Lella Ricci (1850–71), Italian singer * Luigi Ricci (composer), Luigi Ricci (1805–59), Italian composer * Luigi Ricci (vocal coach), Luigi Ricci (1893–1981), Italian vocal coach * Luigi Ricci-Stolz (1852–1906), Italian composer * Marco Ricci (1676–1730), Italian Baroque painter * Nahéma Ricci, Canadian actress * Nina Ricci (designer) (1883–1970), French fashion designer * Nino Ricci (born 1959), Canadian novelist * Regolo Ricci (born 1955), Canadian painter and illustrator * Ruggiero Ricci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]