Carleman Matrix
   HOME





Carleman Matrix
In mathematics, a Carleman matrix is a matrix used to convert function composition into matrix multiplication. It is often used in iteration theory to find the continuous iteration of functions which cannot be iterated by pattern recognition alone. Other uses of Carleman matrices occur in the theory of probability generating functions, and Markov chains. Definition The Carleman matrix of an infinitely differentiable function f(x) is defined as: :M = \frac\left frac (f(x))^j \right ~, so as to satisfy the (Taylor series) equation: :(f(x))^j = \sum_^ M x^k. For instance, the computation of f(x) by :f(x) = \sum_^ M x^k. ~ simply amounts to the dot-product of row 1 of M with a column vector \left ,x,x^2,x^3,...\rightT. The entries of M /math> in the next row give the 2nd power of f(x): :f(x)^2 = \sum_^ M x^k ~, and also, in order to have the zeroth power of f(x) in M /math>, we adopt the row 0 containing zeros everywhere except the first position, such that :f(x)^0 = 1 = \sum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \circ f) is pronounced "the composition of and ". Reverse composition, sometimes denoted f \mapsto g , applies the operation in the opposite order, applying f first and g second. Intuitively, reverse composition is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as #Properties, associativity. Examples * Composition of functions on a finite set (mathematics), set: If , and , then , as shown in the figure. * Composition of functions on an infinite set: If (where is the set of all real numbers) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stirling Numbers Of The First Kind
In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the unsigned Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind. Identities linking the two kinds appear in the article on Stirling numbers. Definitions Definition by algebra The Stirling numbers of the first kind are the coefficients s(n,k) in the expansion of the falling factorial :(x)_n = x(x-1)(x-2)\cdots(x-n+1) into powers of the variable x: :(x)_n = \sum_^n s(n,k) x^k, For example, (x)_3 = x(x-1)(x - 2) = x^3 - 3x^2 + 2x, leading to the values s(3, 3) = 1, s(3, 2) = -3, and s(3, 1) = 2. The unsigned Stirling numbers may also be defined algebraica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functions And Mappings
In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but '' transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "continuous function" in topology, a "linear transformation" in linear algebra, etc. So ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bell Polynomials
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in Faà di Bruno's formula. Definitions Exponential Bell polynomials The ''partial'' or ''incomplete'' exponential Bell polynomials are a triangular array of polynomials given by :\begin B_(x_1,x_2,\dots,x_) &= \sum \left(\right)^\left(\right)^\cdots\left(\right)^ \\ &= n! \sum \prod_^ \frac, \end where the sum is taken over all sequences ''j''1, ''j''2, ''j''3, ..., ''j''''n''−''k''+1 of non-negative integers such that these two conditions are satisfied: :j_1 + j_2 + \cdots + j_ = k, :j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_ = n. The sum :\begin B_n(x_1,\dots,x_n)&=\sum_^n B_(x_1,x_2,\dots,x_)\\ &=n! \sum_ \prod_^n \frac \end is called the ''n''th ''complete exponential Bell polynomial''. Ordinary Bell polynomials Likewise, the partial ''ordinary'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schröder's Equation
Schröder's equation, named after Ernst Schröder, is a functional equation with one independent variable: given the function , find the function such that Schröder's equation is an eigenvalue equation for the composition operator that sends a function to . If is a fixed point of , meaning , then either (or ) or . Thus, provided that is finite and does not vanish or diverge, the eigenvalue is given by . Functional significance For , if is analytic on the unit disk, fixes , and , then Gabriel Koenigs showed in 1884 that there is an analytic (non-trivial) satisfying Schröder's equation. This is one of the first steps in a long line of theorems fruitful for understanding composition operators on analytic function spaces, cf. Koenigs function. Equations such as Schröder's are suitable to encoding self-similarity, and have thus been extensively utilized in studies of nonlinear dynamics (often referred to colloquially as chaos theory). It is also used in studies of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \circ f) is pronounced "the composition of and ". Reverse composition, sometimes denoted f \mapsto g , applies the operation in the opposite order, applying f first and g second. Intuitively, reverse composition is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as #Properties, associativity. Examples * Composition of functions on a finite set (mathematics), set: If , and , then , as shown in the figure. * Composition of functions on an infinite set: If (where is the set of all real numbers) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Composition Operator
In mathematics, the composition operator C_\phi with symbol \phi is a linear operator defined by the rule C_\phi (f) = f \circ \phi where f \circ \phi denotes function composition. It is also encountered in composition of permutations in permutations groups. The study of composition operators is covered bAMS category 47B33 In physics In physics, and especially the area of dynamical systems, the composition operator is usually referred to as the Koopman operator (and its wild surge in popularity is sometimes jokingly called "Koopmania"), named after Bernard Koopman. It is the left-adjoint of the transfer operator of Frobenius–Perron. In Borel functional calculus Using the language of category theory, the composition operator is a pull-back on the space of measurable functions; it is adjoint to the transfer operator in the same way that the pull-back is adjoint to the push-forward; the composition operator is the inverse image functor. Since the domain considered here is that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carleman Linearization
In mathematics, Carleman linearization (or Carleman embedding) is a technique to transform a finite-dimensional nonlinear dynamical system into an infinite-dimensional linear system. It was introduced by the Swedish mathematician Torsten Carleman in 1932. Carleman linearization is related to composition operator and has been widely used in the study of dynamical systems. It also been used in many applied fields, such as in control theory and in quantum computing. Procedure Consider the following autonomous nonlinear system: : \dot=f(x)+\sum_^m g_j(x)d_j(t) where x\in R^n denotes the system state vector. Also, f and g_i's are known analytic vector functions, and d_j is the j^ element of an unknown disturbance to the system. At the desired nominal point, the nonlinear functions in the above system can be approximated by Taylor expansion : f(x)\simeq f(x_0)+ \sum _^\eta \frac\partial f_\mid _(x-x_0)^ where \partial f_\mid _ is the k^ partial derivative of f(x) with respect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transpose
In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. Transpose of a matrix Definition The transpose of a matrix , denoted by , , , A^, , , or , may be constructed by any one of the following methods: #Reflection (mathematics), Reflect over its main diagonal (which runs from top-left to bottom-right) to obtain #Write the rows of as the columns of #Write the columns of as the rows of Formally, the -th row, -th column element of is the -th row, -th column element of : :\left[\mathbf^\operatorname\right]_ = \left[\mathbf\right]_. If is an matrix, then is an matrix. In the case of square matrices, may also denote the th power of the matrix . For avoiding a possibl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stirling Numbers Of The Second Kind
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of ''n'' objects into ''k'' non-empty subsets and is denoted by S(n,k) or \textstyle \left\. Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling. The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the second kind. Identities linking the two kinds appear in the article on Stirling numbers. Definition The Stirling numbers of the second kind, written S(n,k) or \lbrace\textstyle\rbrace or with other notations, count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. Equivalently, they count the number of different equivalence relations wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]