Caesium Sesquioxide
   HOME
*





Caesium Sesquioxide
Caesium sesquioxide is a chemical compound with the formula or . In terms of oxidation states, Caesium in this compound has a nominal charge of +1, and the oxygen is a mixed peroxide () and superoxide () for a structural formula of . Compared to the other caesium oxides, this phase is less well studied, but has been long present in the literature. It can be created by thermal decomposition of caesium superoxide at 290 °C. : The compound is often studied as an example of a Verwey type charge ordering transition at low temperatures. There were some theoretical suggestions that would be a ferromagnetic half metal, but along with the closely related rubidium sesquioxide, experimental results found a magnetically frustrated system. Below about 200 K, the structure changes to tegragonal symmetry. Electron paramagnetic resonance and nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rubidium Sesquioxide
Rubidium sesquioxide is a chemical compound with the formula or . In terms of oxidation states, Rubidium in this compound has a nominal charge of +1, and the oxygen is a mixed peroxide () and superoxide () for a structural formula of . It has been studied theoretically as an example of a strongly correlated material. The compound was predicted to be a rare example of a ferromagnetic compound that is magnetic due to a p-block element, and a half-metal that was conducting in the minority spin band. However, while the material does have exotic magnetic behavior, experimental results instead showed an electrically insulating magnetically frustrated system. also displays a Verwey transition where charge ordering appears at 290 K. Rubidium sesquioxide can be prepared by reacting the peroxide and the superoxide : : It is initially discovered in 1907, and more thoroughly characterized in 1939. The compound crystallizes in a body-centered cubic form with the same crystal structure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superoxide
In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen , which occurs widely in nature. Molecular oxygen (dioxygen) is a diradical containing two unpaired electrons, and superoxide results from the addition of an electron which fills one of the two degenerate molecular orbitals, leaving a charged ionic species with a single unpaired electron and a net negative charge of −1. Both dioxygen and the superoxide anion are free radicals that exhibit paramagnetism. Superoxide was historically also known as "hyperoxide". Salts Superoxide forms salts with alkali metals and alkaline earth metals. The salts caesium superoxide (), rubidium superoxide (), potassium superoxide (), and sodium superoxide () are prepared by the reaction of with the respective alkali me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superexchange
Superexchange, or Kramers–Anderson superexchange, is the strong (usually) antiferromagnetic coupling between two next-to-nearest neighbour cations through a non-magnetic anion. In this way, it differs from direct exchange, in which there is coupling between nearest neighbor cations not involving an intermediary anion. Superexchange is a result of the electrons having come from the same donor atom and being coupled with the receiving ions' spins. If the two next-to-nearest neighbor positive ions are connected at 90 degrees to the bridging non-magnetic anion, then the interaction can be a ferromagnetic interaction. Superexchange was proposed by Hendrik Kramers in 1934, when he noticed that in crystals like MnO, there are Mn atoms that interact with one another despite having nonmagnetic oxygen atoms between them. Phillip Anderson later refined Kramers' model in 1950. A set of semi-empirical rules were developed by John B. Goodenough and in the 1950s. These rules, now referred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20  tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron Paramagnetic Resonance
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford. Theory Origin of an EPR signal Every electron has a magnetic moment and spin quantum number s = \tfrac , with magnetic components m_\mathrm = + \tfrac or m_\mathrm = - \tfrac . In the presence of an external magnetic field with strength B_\mathrm , the electron's magnetic moment aligns itself either antiparallel ( m_\mathrm = - \tfrac ) or parallel ( m_\mathrm = + \tfrac ) to the fie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometrical Frustration
In condensed matter physics, the term geometrical frustration (or in short: frustration) refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces (each one favoring rather simple, but different structures) lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures. Much studied examples are amorphous materials, glasses, or dilute magnets. The term ''frustration'', in the context of magnetic systems, has been introduced by Gerard Toulouse in 1977. Frustrated magnetic systems had been studied even before. Early work includes a study of the Ising model on a triangular lattice with nearest-neighbor spins coupled antiferromagnetically, by G. H. Wannier, published in 1950. Related features occur in magnets with ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rubidium Sesquioxide
Rubidium sesquioxide is a chemical compound with the formula or . In terms of oxidation states, Rubidium in this compound has a nominal charge of +1, and the oxygen is a mixed peroxide () and superoxide () for a structural formula of . It has been studied theoretically as an example of a strongly correlated material. The compound was predicted to be a rare example of a ferromagnetic compound that is magnetic due to a p-block element, and a half-metal that was conducting in the minority spin band. However, while the material does have exotic magnetic behavior, experimental results instead showed an electrically insulating magnetically frustrated system. also displays a Verwey transition where charge ordering appears at 290 K. Rubidium sesquioxide can be prepared by reacting the peroxide and the superoxide : : It is initially discovered in 1907, and more thoroughly characterized in 1939. The compound crystallizes in a body-centered cubic form with the same crystal structure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Half Metal
A half-metal is any substance that acts as a conductor to electrons of one spin orientation, but as an insulator or semiconductor to those of the opposite orientation. Although all half-metals are ferromagnetic (or ferrimagnetic), most ferromagnets are not half-metals. Many of the known examples of half-metals are oxides, sulfides, or Heusler alloys. In half-metals, the valence band for one spin orientation is partially filled while there is a gap in the density of states for the other spin orientation. This results in conducting behavior for only electrons in the first spin orientation. In some half-metals, the majority spin channel is the conducting one while in others the minority channel is. Half-metals were first described in 1983, as an explanation for the electrical properties of Mn-based Heusler alloys. Some notable half-metals are chromium(IV) oxide, magnetite, and lanthanum strontium manganite (LSMO), as well as chromium arsenide. Half-metals have attracted some i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charge Ordering
Charge ordering (CO) is a (first- or second-order) phase transition occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. Due to the strong interaction between electrons, charges are localized on different sites leading to a disproportionation and an ordered superlattice. It appears in different patterns ranging from vertical to horizontal stripes to a checkerboard–like pattern , and it is not limited to the two-dimensional case. The charge order transition is accompanied by symmetry breaking and may lead to ferroelectricity. It is often found in close proximity to superconductivity and colossal magnetoresistance. This long range order phenomena was first discovered in magnetite (Fe3O4) by Verwey in 1939. He observed an increase of the electrical resistivity by two orders of magnitude at TCO=120K, suggesting a phase transition which is now well known as the Verwey transition. He was the first to propose the idea of an orderin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Verwey Transition
The Verwey transition is a low-temperature phase transition in the mineral magnetite associated with changes in its magnetic, electrical, and thermal properties. It typically occurs near a temperature of 120 K but is observed at a range of temperatures between 80 and 125 K, although the spread is generally tight around 118-120 K in natural magnetites. Upon warming through the Verwey transition temperature (), the magnetite crystal lattice changes from a monoclinic structure insulator to the metallic cubic inverse spinel structure that persists at room temperature. The phenomenon is named after Evert Verwey, a Dutch chemist who first recognized, in the 1940s, the connection between the structural transition and the changes in the physical properties of magnetite. This was the first metal-insulator transition to be found. The Verwey transition is near in temperature, but distinct from, a magnetic isotropic point in magnetite, at which the first magnetocrystalline anisotropy cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Caesium Superoxide
Caesium superoxide is the superoxide of caesium. It is an orange solid. Preparation Burning caesium in excess oxygen will produce caesium superoxide. : Properties Caesium superoxide's crystal structure is same as calcium carbide. It contains direct oxygen-oxygen bonding. It reacts with water to form hydrogen peroxide and caesium hydroxide. : The standard enthalpy of formation ΔHf0 of caesium superoxide is −295 kJ/mol. Caesium superoxide reacts with ozone to form caesium ozonide Caesium ozonide (CsO3) is an oxygen-rich compound of caesium. It is an ozonide, meaning it contains the ozonide anion (O3−). It can be formed by reacting ozone with caesium superoxide: :CsO2 + O3 -> CsO3 + O2 The compound will react strongly .... : References Caesium compounds Superoxides {{inorganic-compound-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peroxide
In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen peroxide (), colloquially known simply as "peroxide". It is marketed as solutions in water at various concentrations. Many organic peroxides are known as well. In addition to hydrogen peroxide, some other major classes of peroxides are: * Peroxy acids, the peroxy derivatives of many familiar acids, examples being peroxymonosulfuric acid and peracetic acid, and their salts, one example of which is potassium peroxydisulfate. * Main group peroxides, compounds with the linkage (E = main group element). * Metal peroxides, examples being barium peroxide (), sodium peroxide () and zinc peroxide Zinc peroxide (ZnO2) appears as a bright yellow powder at room temperature. It was historically used as a surgical antiseptic. More recently zinc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]