Fixed-point Theorems
   HOME





Fixed-point Theorems
In mathematics, a fixed-point theorem is a result saying that a function ''F'' will have at least one fixed point (a point ''x'' for which ''F''(''x'') = ''x''), under some conditions on ''F'' that can be stated in general terms. In mathematical analysis The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. By contrast, the Brouwer fixed-point theorem (1911) is a non- constructive result: it says that any continuous function from the closed unit ball in ''n''-dimensional Euclidean space to itself must have a fixed point, but it doesn't describe how to find the fixed point (see also Sperner's lemma). For example, the cosine function is continuous in ��1, 1and maps it into ��1, 1 and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve ''y'' = cos(''x'') intersects t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursion (computer Science)
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursion, recursive problems by using function (computer science), functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. Most computer programming languages support recursion by allowing a function to call itself from within its own code. Some functional programming languages (for instance, Clojure) do not define any looping constructs but rely solely on recursion to repeatedly call code. It is proved in computability theory that these recursive-only languages are Turing complete; this means that they are as powerful (they can be used to solve the same problems) as imperative languages based on control structures such as and . Repeatedly calling a function from within itse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fixed-point Combinator
In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function (i.e., a function which takes a function as argument) that returns some '' fixed point'' (a value that is mapped to itself) of its argument function, if one exists. Formally, if \mathrm is a fixed-point combinator and the function f has one or more fixed points, then \mathrm\ f is one of these fixed points, i.e., : \mathrm\ f\ = f\ (\mathrm\ f) . Fixed-point combinators can be defined in the lambda calculus and in functional programming languages, and provide a means to allow for recursive definitions. ''Y'' combinator in lambda calculus In the classical untyped lambda calculus, every function has a fixed point. A particular implementation of \mathrm is Haskell Curry's paradoxical combinator ''Y'', given byThroughout this article, the syntax rules given in Lambda calculus#Notation are used, to save parentheses.According to Barendregt p.132, the name origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lambda Calculus
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using variable Name binding, binding and Substitution (algebra), substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was #History, logically consistent, and documented it in 1940. Lambda calculus consists of constructing #Lambda terms, lambda terms and performing #Reduction, reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Static Program Analysis
In computer science, static program analysis (also known as static analysis or static simulation) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution in the integrated environment. The term is usually applied to analysis performed by an automated tool, with human analysis typically being called "program understanding", program comprehension, or code review. In the last of these, software inspection and software walkthroughs are also used. In most cases the analysis is performed on some version of a program's source code, and, in other cases, on some form of its object code. Rationale The sophistication of the analysis performed by tools varies from those that only consider the behaviour of individual statements and declarations, to those that include the complete source code of a program in their analysis. The uses of the information obtained from the analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Interpretation
In computer science, abstract interpretation is a theory of sound approximation of the semantics of computer programs, based on monotonic functions over ordered sets, especially lattices. It can be viewed as a partial execution of a computer program which gains information about its semantics (e.g., control-flow analysis, control-flow, data-flow analysis, data-flow) without performing all the calculations. Its main concrete application is formal static code analysis, static analysis, the automatic information extraction, extraction of information about the possible executions of computer programs; such analyses have two main usages: * inside compilers, to analyse programs to decide whether certain Optimization (computer science), optimizations or Program transformation, transformations are applicable; * for debugging or even the certification of programs against classes of bugs. Abstract interpretation was formalized by the French computer scientist working couple Patrick Cousot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bourbaki–Witt Theorem
In mathematics, the Bourbaki–Witt theorem in order theory, named after Nicolas Bourbaki and Ernst Witt, is a basic fixed-point theorem for partially ordered sets. It states that if ''X'' is a non-empty chain complete poset, and f : X \to X such that f (x) \geq x for all x, then ''f'' has a fixed point. Such a function ''f'' is called ''inflationary'' or ''progressive''. Special case of a finite poset If the poset ''X'' is finite then the statement of the theorem has a clear interpretation that leads to the proof. The sequence of successive iterates, : x_=f(x_n), n=0,1,2,\ldots, where ''x''0 is any element of ''X'', is monotone increasing. By the finiteness of ''X'', it stabilizes: : x_n=x_, for ''n'' sufficiently large. It follows that ''x''∞ is a fixed point of ''f''. Proof of the theorem Pick some y \in X. Define a function ''K'' recursively on the ordinals as follows: :\,K(0) = y :\,K( \alpha+1 ) = f( K( \alpha ) ). If \beta is a limit ordinal, then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Lattice
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only ''pairs'' of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete. Complete lattices appear in many applications in mathematics and computer science. Both order theory and universal algebra study them as a special class of lattices. Complete lattices must not be confused with complete partial orders (CPOs), a more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (locales). Formal definition A ''complete lattice'' is a partially ordered set (''L'', ≤) such that every subset ''A'' of ''L'' has both a greatest lower bound (the infimum, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monotonic
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus and analysis In calculus, a function f defined on a subset of the real numbers with real values is called ''monotonic'' if it is either entirely non-decreasing, or entirely non-increasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is termed ''monotonically increasing'' (also ''increasing'' or ''non-decreasing'') if for all x and y such that x \leq y one has f\!\left(x\right) \leq f\!\left(y\right), so f preserves the order (see Figure 1). Likewise, a function is called ''monotonically decreasing'' (also ''decreasing'' or ''non-increasing'') if, whenever x \leq y, then f\!\left(x\right) \geq f\!\left(y\right), so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knaster–Tarski Theorem
In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: :''Let'' (''L'', ≤) ''be a complete lattice and let f : L → L be an order-preserving (monotonic) function w.r.t. ≤. Then the set of fixed points of f in L forms a complete lattice under ≤.'' It was Tarski who stated the result in its most general form, and so the theorem is often known as Tarski's fixed-point theorem. Some time earlier, Knaster and Tarski established the result for the special case where ''L'' is the lattice of subsets of a set, the power set lattice. The theorem has important applications in formal semantics of programming languages and abstract interpretation, as well as in game theory. A kind of converse of this theorem was proved by Anne C. Davis: If every order-preserving function ''f'' : ''L'' → ''L'' on a lattice ''L'' has a fixed point, then ''L'' is a complete lattice. Consequences: l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]