Effective Descriptive Set Theory
   HOME





Effective Descriptive Set Theory
Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory. Constructions Effective Polish space An effective Polish space is a complete separable metric space that has a computable presentation. Such spaces are studied in both effective descriptive set theory and in constructive analysis. In particular, standard examples of Polish spaces such as the real line, the Cantor set and the Baire space are all effective Polish spaces. Arithmetical hierarchy The arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski Mostowski (feminine: Mostowska, plural: Mostowscy) is a surname. It may refer to: * Mostowski Palace (), an 18th-century palace in Warsaw * Andrzej Mostowski (1913 - 1975), a Polish mathematician ** Mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" set (mathematics), subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and Group action (mathematics), group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space (set theory), Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Line
A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely. The association between numbers and point (geometry), points on the line links elementary arithmetic, arithmetical operations on numbers to geometry, geometric relations between points, and provides a conceptual framework for learning mathematics. In elementary mathematics, the number line is initially used to teach addition and subtraction of integers, especially involving negative numbers. As students progress, more kinds of numbers can be placed on the line, including fractions, decimal fractions, square roots, and transcendental numbers such as the pi, circle constant : Every point of the number line corresponds to a unique real number, and every real number to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logically Equivalent
In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. Logical equivalences In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these. General logical equivalences Logical equivalences involving conditional statements :#p \rightarrow q \equiv \neg p \vee q :#p \rightarrow q \equiv \neg q \rightarrow \neg p :#p \vee q \equiv \neg p \rightarrow q :#p \wedge q \equiv \neg (p \rightarrow \neg q) :#\neg (p \rightarrow q) \equiv p \wedge \neg q :#(p \rightarro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE